Do you want to publish a course? Click here

Low density symmetry energy effects in the neutron star crust properties

477   0   0.0 ( 0 )
 Added by Sebastian Kubis
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The form of the nuclear symmetry energy $E_s$ around saturation point density leads to a different crust-core transition point in the neutron star and affect the crust properties. We show that the knowledge about $E_s$ close to the saturation point is not sufficient, because the very low density behaviour is relevant. We also claim that crust properties are strongly influenced by the very high density behavior of $E_s$, so in order to conclude about the form of low density part of the symmetry energy one must isolate properly the high density part.



rate research

Read More

The functional form of the nuclear symmetry energy in the whole range of densities relevant for the neutron stars is still unknown. Discrepancies concern both the low as well as the high density behaviour of this function. By use of Bezier curves three different families of the symmetry energy shapes, relevant for different density range were introduced. Their consequences for the crustal properties of neutron stars are presented.
The structure and composition of the inner crust of neutron stars, as well as global stellar properties such as radius and moment of inertia, have been shown to correlate with parameters characterizing the symmetry energy of nuclear matter such as its magnitude J and density dependence L at saturation density. It is thus mutually beneficial to nuclear physicists and astrophysicists to examine the combined effects of such correlations on potential neutron star observables in the light of recent experimental and theoretical constraints on J, L, and relationships between them. We review some basic correlations between these nuclear and astrophysical observables, and illustrate the impact of recent progress in constraining the J-L parameter space on the composition of the inner crust, crust-core transition density and pressure, and extent of the hypothesized pasta region. We use a simple compressible liquid drop model in conjunction with a simple model of nuclear matter which allows for independent, smooth, variation of the J and L. We extend the model into the core using the same nuclear matter model to explore the effects on global crust and core properties, and on potential observables such as crust oscillation frequencies and mechanically supported crust deformation. Throughout we illustrate the importance of the relationship between J and L implicit in a particular model of nuclear matter to the predictions of neutron star properties.
In this book chapter we review plasma crystals in the laboratory, in the interior of white dwarf stars, and in the crust of neutron stars. We describe a molecular dynamics formalism and show results for many neutron star crust properties including phase separation upon freezing, diffusion, breaking strain, shear viscosity and dynamics response of nuclear pasta. We end with a summary and discuss open questions and challenges for the future.
The modeling of many neutron star observables incorporates the microphysics of both the stellar crust and core, which is tied intimately to the properties of the nuclear matter equation of state (EoS). We explore the predictions of such models over the range of experimentally constrained nuclear matter parameters, focusing on the slope of the symmetry energy at nuclear saturation density $L$. We use a consistent model of the composition and EoS of neutron star crust and core matter to model the binding energy of pulsar B of the double pulsar system J0737-3039, the frequencies of torsional oscillations of the neutron star crust and the instability region for r-modes in the neutron star core damped by electron-electron viscosity at the crust-core interface. By confronting these models with observations, we illustrate the potential of astrophysical observables to offer constraints on poorly known nuclear matter parameters complementary to terrestrial experiments, and demonstrate that our models consistently predict $L<70$ MeV.
We calculate the thermal conductivity of electrons for the strongly correlated multi-component ion plasma expected in the outer layers of neutron stars crust employing a Path Integral Monte Carlo (PIMC) approach. This allows us to isolate the low energy response of the ions and use it to calculate the electron scattering rate and the electron thermal conductivity. We find that the scattering rate is enhanced by a factor 2-4 compared to earlier calculations based on the simpler electron-impurity scattering formalism. This findings directly impacts the interpretation of thermal relaxation observed in transiently accreting neutron stars and has implications for the composition and nuclear reactions in the crust that occur during accretion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا