Do you want to publish a course? Click here

Calorimetric Evidence of Multiband Superconductivity in Ba(Fe0.925Co0.075)2As2

561   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the determination of the electronic heat capacity of a slightly overdoped (x = 0.075) Ba(Fe1-xCox)2As2 single crystal with a Tc of 21.4 K. Our analysis of the temperature dependence of the superconducting-state specific heat provides strong evidence for a two-band s-wave order parameter with gap amplitudes 2D1(0)/kBTc=1.9 and 2D2(0)/kBTc=4.4. Our result is consistent with the recently predicted s+- order parameter [I. I. Mazin et al., Phys. Rev. Lett. 101, 057003 (2008)].



rate research

Read More

126 - J. Hu , T.J. Liu , B. Qian 2011
We have investigated the specific heat of optimally-doped iron chalcogenide superconductor Fe(Te0.57Se0.43) with a high-quality single crystal sample. The electronic specific heat Ce of this sample has been successfully separated from the phonon contribution using the specific heat of a non-superconducting sample (Fe0.90Cu0.10)(Te0.57Se0.43) as a reference. The normal state Sommerfeld coefficient gamma_n of the superconducting sample is found to be ~ 26.6 mJ/mol K^2, indicating intermediate electronic correlation. The temperature dependence of Ce in the superconducting state can be best fitted using a double-gap model with 2Delta_s(0)/kBTc = 3.92 and 2Delta_l(0)/kBTc = 5.84. The large gap magnitudes derived from fitting, as well as the large specific heat jump of Delta_Ce(Tc)/gamma_n*Tc ~ 2.11, indicate strong-coupling superconductivity. Furthermore, the magnetic field dependence of specific heat shows strong evidence for multiband superconductivity.
We investigated the elastic properties of the iron-based superconductor Ba(Fe1-xCox)2As2 with eight Co concentrations. The elastic constant C66 shows large elastic softening associated with the structural phase transition. The C66 was analyzed base on localized and itinerant pictures of Fe-3d electrons, which shows the strong electron-lattice coupling and a possible mass enhancement in this system. The results resemble those of unconventional superconductors, where the properties of the system are governed by the quantum fluctuations associated with the zero-temperature critical point of the long-range order; namely, the quantum critical point (QCP). In this system, the inverse of C66 behaves just like the magnetic susceptibility in the magnetic QCP systems. While the QCPs of these existing superconductors are all ascribed to antiferromagnetism, our systematic studies on the canonical iron-based superconductor Ba(Fe1-xCox)2As2 have revealed that there is a signature of structural quantum criticality in this material, which is so far without precedent. The elastic constant anomaly is suggested to concern with the emergence of superconductivity. These results highlight the strong electron-lattice coupling and effect of the band in this system, thus challenging the prevailing scenarios that focus on the role of the iron 3d-orbitals.
75As NMR and susceptiblity were measured in a Ba(Fe1-xCox)2As2 single crystal for x=6%. Nuclear Magnetic Resonance (NMR) spectra and relaxation rates allow to show that all Fe sites experience an incommensurate magnetic ordering below T=31K. Comparison with undoped compound allows to estimate a typical moment of 0.05 muB. Anisotropy of the NMR widths can be interpreted using a model of incommensurability with a wavevector (1/2-eps,0,l) with eps of the order of 0.04. Below TC=21.8K, a full volume superconductivity develops as shown by susceptibility and relaxation rate, and magnetic order remains unaffected, demonstrating coexistence of both states on each Fe site.
75As nuclear magnetic resonance (NMR) experiments were performed on Ba(Fe1-xMnx)2As2 (xMn = 2.5%, 5% and 12%) single crystals. The Fe layer magnetic susceptibility far from Mn atoms is probed by the75As NMR line shift and is found similar to that of BaFe2As2, implying that Mn does not induce charge doping. A satellite line associated with the Mn nearest neighbours (n.n.) of 75As displays a Curie-Weiss shift which demonstrates that Mn carries a local magnetic moment. This is confirmed by the main line broadening typical of a RKKY-like Mn-induced staggered spin polarization. The Mn moment is due to the localization of the additional Mn hole. These findings explain why Mn does not induce superconductivity in the pnictides contrary to other dopants such as Co, Ni, Ru or K.
This work presents 75As NMR spin echo decay rate (1/T2) measurements in Ba(Fe1-xRhx)2As2 superconductors, for 0.041 < x < 0.094. It is shown that 1/T2 increases upon cooling, in the normal phase, suggesting the onset of an unconventional very low-frequency activated dynamic. The correlation times of the fluctuations and their energy barriers are derived. The motion is favored at large Rh content, while it is hindered by the application of a magnetic field perpendicular to the FeAs layers. The same dynamic is observed in the spin-lattice relaxation rate, in a quantitatively consistent manner. These results are discussed in the light of nematic fluctuations involving domain wall motion. The analogies with the behaviour observed in the cuprates are also outlined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا