Under the assumption that the variations of parameters of nature and the current acceleration of the universe are related and governed by the evolution of a single scalar field, we show how information can be obtained on the nature of dark energy from observational detection of (or constraints on) cosmological variations of the fine structure constant and the proton-to-electron mass ratio. We also comment on the current observational status, and on the prospects for improvements with future spectrographs such as ESPRESSO and CODEX.
A large number of cosmological parameters have been suggested for obtaining information on the nature of dark energy. In this work, we study the efficacy of these different parameters in discriminating theoretical models of dark energy, using both currently available supernova (SNe) data, and simulations of future observations. We find that the current data does not put strong constraints on the nature of dark energy, irrespective of the cosmological parameter used. For future data, we find that the although deceleration parameter can accurately reconstruct some dark energy models, it is unable to discriminate between different models of dark energy, therefore limiting its usefulness. Physical parameters such as the equation of state of dark energy, or the dark energy density do a good job of both reconstruction and discrimination if the matter density is known to high accuracy. However, uncertainty in matter density reduces the efficacy of these parameters. A recently proposed parameter, Om(z), constructed from the first derivative of the SNe data, works very well in discriminating different theoretical models of dark energy, and has the added advantage of not being dependent on the value of matter density. Thus we find that a cosmological parameter constructed from the first derivative of the data, for which the theoretical models of dark energy are sufficiently distant from each other, and which is independent of the matter density, performs the best in reconstructing dark energy from SNe data.
We discuss methods based on Principal Component Analysis to constrain the dark energy equation of state using a combination of Type Ia supernovae at low redshift and spectroscopic measurements of varying fundamental couplings at higher redshifts. We discuss the performance of this method when future better-quality datasets are available, focusing on two forthcoming ESO spectrographs - ESPRESSO for the VLT and CODEX for the E-ELT - which include these measurements as a key part of their science cases. These can realize the prospect of a detailed characterization of dark energy properties almost all the way up to redshift 4.
A new bound dark energy, BDE, cosmology has been proposed where the dark energy is the binding energy between light meson fields that condense a few tens of years after the big bang. It is reported that the correct dark energy density emerges using particle physics without fine tuning. This alone makes the BDE cosmology worthy of further investigation. This work looks at the late time BDE predictions of the evolution of cosmological parameters and the values of fundamental constants to determine whether the cosmologys predictions are consistent with observation. The work considers the time period between a scale factor of 0.1 and 1.0. A model BDE cosmology is considered with current day values of the cosmological parameters well within the observational limits. The calculations use three different values of the current day dark energy equation of state close to minus one. All three cases produce evolutions of the cosmological parameters and fundamental constants consistent with the observational constraints. Analytic relations between the BDE and cosmological parameters are developed to insure a consistent set of parameters.
We discuss the existence of an acceleration scale in galaxies and galaxy clusters. The presence of the same acceleration scale found at very different scales and in very different astrophysical objects strongly supports the existence of a fundamental acceleration scale governing the observed gravitational physics. We also comment on the implication of such a fundamental acceleration scale on the problem of dark matter. We discuss the relevance of the fundamental acceleration for the nature of dark matter as well as for structure formation to be explored in future numerical simulations.
This paper uses the beta function formalism to extend the analysis of quintessence cosmological parameters to the logarithmic and exponential dark energy potentials. The previous paper (Thompson 2018) demonstrated the formalism using power and inverse power potentials. The essentially identical evolution of the Hubble parameter for all of the quintessence cases and LambdaCDM is attributed to the flatness of the quintessence dark energy potentials in the dark energy dominated era. The Hubble parameter is therefore incapable of discriminating between static and dynamic dark energy. Unlike the other three potentials considered in the two papers the logarithmic dark energy potential requires a numerical integration in the formula for the superpotential rather than being an analytic function. The dark energy equation of state and the fundamental constants continue to be good discriminators between static and dynamical dark energy. A new analysis of quintessence with all four of the potentials relative the swampland conjectures indicates that the conjecture on the change in the scalar field is satisfied but that the conjecture on the change of the potential is not.
N. J. Nunes
,T. Dent
,C. J. A. P. Martins
.
(2009)
.
"Reconstructing the evolution of dark energy with variations of fundamental parameters"
.
Nelson Nunes
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا