This talk at the CPT19 meeting outlines a few recent developments in Lorentz and CPT violation, with particular attention to results obtained by researchers at the Indiana University Center for Spacetime Symmetries.
A framework is presented for the factorization of high-energy hadronic processes in the presence of Lorentz and CPT violation. The comprehensive effective field theory describing Lorentz and CPT violation, the Standard-Model Extension, is used to demonstrate factorization of the hadronic tensor at leading order in electroweak interactions for deep inelastic scattering and for the Drell-Yan process. Effects controlled by both minimal and nonminimal coefficients for Lorentz violation are explored, and the equivalent parton-model description is derived. The methodology is illustrated by determining cross sections and studying estimated attainable sensitivities to Lorentz violation using real data collected at the Hadronen-Elektronen Ring Anlage and the Large Hadron Collider and simulated data for the future US-based electron-ion collider.
The largest gap in our understanding of nature at the fundamental level is perhaps a unified description of gravity and quantum theory. Although there are currently a variety of theoretical approaches to this question, experimental research in this field is inhibited by the expected Planck-scale suppression of quantum-gravity effects. However, the breakdown of spacetime symmetries has recently been identified as a promising signal in this context: a number of models for underlying physics can accommodate minuscule Lorentz and CPT violation, and such effects are amenable to ultrahigh-precision tests. This presentation will give an overview of the subject. Topics such as motivations, the SME test framework, mechanisms for relativity breakdown, and experimental tests will be reviewed. Emphasis is given to observations involving antimatter.
This contribution to the CPT16 meeting briefly highlights some of the recent progress in the phenomenology of Lorentz and CPT violation, with emphasis on research performed at the Indiana University Center for Spacetime Symmetries.
This work tabulates measured and derived values of coefficients for Lorentz and CPT violation in the Standard-Model Extension. Summary tables are extracted listing maximal attained sensitivities in the matter, photon, neutrino, and gravity sectors. Tables presenting definitions and properties are also compiled.
Lorentz and CPT invariance are among the symmetries that can be investigated with ultrahigh precision in subatomic physics. Being spacetime symmetries, Lorentz and CPT invariance can be violated by minuscule amounts in many theoretical approaches to underlying physics that involve novel spacetime concepts, such as quantiz