Do you want to publish a course? Click here

Multiwavelength observations of a TeV-Flare from W Comae

127   0   0.0 ( 0 )
 Added by Gernot Maier
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report results from an intensive multiwavelength campaign on the intermediate-frequency-peaked BL Lacertae object W Com (z=0.102) during a strong outburst of very high energy gamma-ray emission in June 2008. The very high energy gamma-ray signal was detected by VERITAS on 2008 June 7-8 with a flux F(>200 GeV) = (5.7+-0.6)x10^-11 cm-2s-1, about three times brighter than during the discovery of gamma-ray emission from W Com by VERITAS in 2008 March. The initial detection of this flare by VERITAS at energies above 200 GeV was followed by observations in high energy gamma-rays (AGILE, E>100 MeV), and X-rays (Swift and XMM-Newton), and at UV, and ground-based optical and radio monitoring through the GASP-WEBT consortium and other observatories. Here we describe the multiwavelength data and derive the spectral energy distribution (SED) of the source from contemporaneous data taken throughout the flare.



rate research

Read More

Combined with very-long-baseline interferometry measurements, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL~Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL~Lacertae observed by VERITAS, with a rise time of $sim$2.3~hr and a decay time of $sim$36~min. The peak flux above 200 GeV is $(4.2 pm 0.6) times 10^{-6} ;text{photon} ;text{m}^{-2}; text{s}^{-1}$ measured with a 4-minute-binned light curve, corresponding to $sim$180% of the flux which is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in VLBA observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models which invoke relativistic plasma passing stationary shocks.
Observations of fast TeV $gamma$-ray flares from blazars reveal the extreme compactness of emitting regions in blazar jets. Combined with very-long-baseline radio interferometry measurements, they probe the structure and emission mechanism of the jet. We report on a fast TeV $gamma$-ray flare from BL Lacertae observed by VERITAS, with a rise time of about 2.3 hours and a decay time of about 36 minutes. The peak flux at $>$200 GeV measured with the 4-minute binned light curve is $(4.2 pm 0.6) times 10^{-6} ;text{photons} ;text{m}^{-2}, text{s}^{-1}$, or $sim$180% the Crab Nebula flux. Variability in GeV $gamma$-ray, X-ray, and optical flux, as well as in optical and radio polarization was observed around the time of the TeV $gamma$-ray flare. A possible superluminal knot was identified in the VLBA observations at 43 GHz. The flare constrains the size of the emitting region, and is consistent with several theoretical models with stationary shocks.
The radiation mechanism of very high energy $gamma$-ray emission from blazars and crucial parameters like magnetic field, and size of the emitting region are not well understood yet. To understand the above mentioned properties of blazars, we observed five nearby TeV $gamma$-ray emitting blazars (Mrk421, Mrk501, 1ES2344+514, 1ES1218+304 and 3C454.3) and one radio galaxy (M87) using the High Altitude GAmma Ray (HAGAR) telescope. HAGAR is an array of seven telescopes located at Hanle, India to detect Cherenkov light caused by extensive air showers initiated by $gamma$-rays. Mrk421 was observed to undergo one of its brightest flaring episodes on 2010 February 17, and detected by various experiments in X-rays and $gamma$- rays. HAGAR observations of this source during 2010 February 13 - 19, in the energies above 250 GeV show an enhancement in the flux level, with a flux of 6-7 Crab units being detected on 2010 February 17. We present the spectral energy distribution of the source during this flaring episode. In addition to this, the analysis procedure to extract $gamma$-ray signal from HAGAR data is discussed and preliminary results on all the AGNs are presented.
Context: The nearby (z=0.031) TeV blazar Mrk421 was reported to be in a high state of flux activity since November, 2009. Aims: To investigate possible changes in the physical parameters of Mrk421 during its high state of activity using multiwavelength data. Methods: We have observed this source in bright state using High Altitude GAmma Ray (HAGAR) telescope array at energies above 250 GeV during February 13 - 19, 2010. Optical, X-ray and gamma-ray archival data are also used to obtain the SEDs and light curves. Results: Mrk421 was found to undergo one of its brightest flaring episodes on February 17, 2010 by various observations in X-rays and gamma-rays. HAGAR observations during February 13 - 19, 2010 at the energies above 250 GeV show an enhancement in the flux level, with a maximum flux of ~ 7 Crab units being detected on February 17, 2010. We present the spectral energy distributions during this flaring episode and investigate the correlation of the variability in X-ray and gamma-ray bands. Conclusions: Our multiwavelength study suggests that the flare detected during February 16 and 17, 2010 could arise due to a passing shock in the jet.
Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the VHE (very-high-energy, > 100 GeV) gamma-ray band. Aims. We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ray state. Methods. We performed VHE gamma-ray observations of PKS 1510-089 with the MAGIC telescopes during a long high gamma-ray state in May 2015. In order to perform broadband modelling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results. PKS 1510-089 has been detected by MAGIC during a few day-long observations performed in the middle of a long, high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. However, due to large uncertainty on the knot separation time, the association with the VHE gamma-ray emission cannot be firmly established. The spectral shape in the VHE band during the flare is similar to the ones obtained during previous measurements of the source. The observed flux variability sets for the first time constraints on the size of the region from which VHE gamma rays are emitted. We model the broadband SED in the framework of the external Compton scenario and discuss the possible emission site in view of multiwavelength data and alternative emission models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا