Do you want to publish a course? Click here

Can dry merging explain the size evolution of early-type galaxies?

152   0   0.0 ( 0 )
 Added by Carlo Nipoti
 Publication date 2009
  fields Physics
and research's language is English
 Authors C. Nipoti




Ask ChatGPT about the research

The characteristic size of early-type galaxies (ETGs) of given stellar mass is observed to increase significantly with cosmic time, from redshift z>2 to the present. A popular explanation for this size evolution is that ETGs grow through dissipationless (dry) mergers, thus becoming less compact. Combining N-body simulations with up-to-date scaling relations of local ETGs, we show that such an explanation is problematic, because dry mergers do not decrease the galaxy stellar-mass surface-density enough to explain the observed size evolution, and also introduce substantial scatter in the scaling relations. Based on our set of simulations, we estimate that major and minor dry mergers increase half-light radius and projected velocity dispersion with stellar mass (M) as M^(1.09+/-0.29) and M^(0.07+/-0.11), respectively. This implies that: 1) if the high-z ETGs are indeed as dense as estimated, they cannot evolve into present-day ETGs via dry mergers; 2) present-day ETGs cannot have assembled more than ~45% of their stellar mass via dry mergers. Alternatively, dry mergers could be reconciled with the observations if there was extreme fine tuning between merger history and galaxy properties, at variance with our assumptions. Full cosmological simulations will be needed to evaluate whether this fine-tuned solution is acceptable.



rate research

Read More

80 - A. Lapi 2018
[ABRIDGED] We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs), that encompasses their high-$z$ star-forming progenitors, their high-$z$ quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises: biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star-formation takes place and most of the stellar mass is accumulated; ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations, to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size $R_e$, on the ratio $v/sigma$ between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum $j_star$ of the stellar component; we find good consistency with the available multi-band data in average values and dispersion, both for local ETGs and for their $zsim 1-2$ star-forming and quiescent progenitors.
183 - F. S. Liu 2009
We search for ongoing major dry-mergers in a well selected sample of local Brightest Cluster Galaxies (BCGs) from the C4 cluster catalogue. 18 out of 515 early-type BCGs with redshift between 0.03 and 0.12 are found to be in major dry-mergers, which are selected as pairs (or triples) with $r$-band magnitude difference $dm<1.5$ and projected separation $rp<30$ kpc, and showing signatures of interaction in the form of significant asymmetry in residual images. We find that the fraction of BCGs in major dry-mergers increases with the richness of the clusters, consistent with the fact that richer clusters usually have more massive (or luminous) BCGs. We estimate that present-day early-type BCGs may have experienced on average $sim 0.6 (tmerge/0.3Gyr)^{-1}$ major dry-mergers and through this process increases their luminosity (mass) by $15% (tmerge/0.3Gyr)^{-1} (fmass/0.5)$ on average since $z=0.7$, where $tmerge$ is the merging timescale and $fmass$ is the mean mass fraction of companion galaxies added to the central ones. We also find that major dry-mergers do not seem to elevate radio activities in BCGs. Our study shows that major dry-mergers involving BCGs in clusters of galaxies are not rare in the local Universe, and they are an important channel for the formation and evolution of BCGs.
ABRIDGED: We study the evolution since z~1 of the rest-frame B luminosity function of the early-type galaxies (ETGs) in ~0.7 deg^2 in the COSMOS field. In order to identify ALL progenitors of local ETGs we construct the sample of high-z galaxies using two complementary criteria: (i) A morphological selection based on the Zurich Estimator of Structural Types, and (ii) A photometric selection based on the galaxy properties in the (U-V)-M_V color-magnitude diagram. We furthermore constrain both samples so as to ensure that the selected progenitors of ETGs are compatible with evolving into systems which obey the mu_B-r_{hl} Kormendy relation. Assuming the luminosity evolution derived from studies of the fundamental plane for high-z ETGs, our analysis shows no evidence for a decrease in the number density of the most massive ETGs out to z~ 0.7: Both the morphologically- and the photometrically-selected sub-samples show no evolution in the number density of bright (~L>2.5L*) ETGs. Allowing for different star formation histories, and cosmic variance, we estimate a maximum decrease in the number density of massive galaxies at that redshift of ~30%. We observe, however, in both the photometrical and morphological samples, a deficit of up to ~2-3 of fainter ETGs over the same cosmic period. Our results argue against a significant contribution of recent dissipationless ``dry mergers to the formation of the most massive ETGs. We suggest that the mass growth in low luminosity ETGs can be explained with a conversion from z~0.7 to z=0 of blue, irregular and disk galaxies into low- and intermediate-mass ``red ETGs, possibly also through gas rich mergers.
83 - S. Andreon 2018
[abridged] This work aims to observationally investigate the history of size growth of early-type galaxies and how the growth depends on cosmic epoch and the mass of the halo in which they are embedded. We carried out a photometric and structural analysis in the rest-frame $V$ band of a mass-selected ($log M/M_odot >10.7$) sample of red-sequence early-type galaxies with spectroscopic/grism redshift in the general field up to $z=2$ to complement a previous work presenting an identical analysis but in halos 100 times more massive and 1000 times denser. We homogeneously derived sizes (effective radii) fully accounting for the multi-component nature of galaxies and the common presence of isophote twists and ellipticity gradients. By using these mass-selected samples, composed of 170 red-sequence early-type galaxies in the general field and 224 identically selected and analyzed in clusters, we isolate the effect on galaxy sizes of the halo in which galaxies are embedded and its dependence on epoch. We find that the $log$ of the galaxy size at a fixed stellar mass, $log M/M_odot= 11$, has increased with epoch at a rate twice as fast in the field than in cluster in the last 10 Gyr ($0.26pm0.03$ versus $0.13pm0.02$ dex per unit redshift). Red-sequence early-type galaxies in the general field reached the size of their cousins in denser environment by $z=0.25pm0.13$ in spite of being three times smaller at $zsim2$. Data point toward a model where size growth is epoch-independent (i.e., $partial log r_e /partial z = c$), but with a rate $c$ depending on environment, $partial c /partial log M_{halo} approx 0.05$. Environment determines the growth rate ($d log r_e / dz$) at all redshifts, indicating an external origin for the galaxy growth without any clear epoch where it ceases to have an effect.
Dissipationless (gas-free or dry) mergers have been suggested to play a major role in the formation and evolution of early-type galaxies, particularly in growing their mass and size without altering their stellar populations. We perform a new test of the dry merger hypothesis by comparing N-body simulations of realistic systems to empirical constraints provided by recent studies of lens early-type galaxies. We find that major and minor dry mergers: i) preserve the nearly isothermal structure of early-type galaxies within the observed scatter; ii) do not change more than the observed scatter the ratio between total mass M and virial mass R_e*sigma/2G (where R_e is the half-light radius and sigma the projected velocity dispersion); iii) increase strongly galaxy sizes [as M^(0.85+/-0.17)] and weakly velocity dispersions [as M^(0.06+/-0.08)] with mass, thus moving galaxies away from the local observed M-R_e and M-sigma relations; iv) introduce substantial scatter in the M-R_e and M-sigma relations. Our findings imply that, unless there is a high degree of fine tuning of the mix of progenitors and types of interactions, present-day massive early-type galaxies cannot have assembled more than ~50% of their mass, and increased their size by more than a factor ~1.8, via dry merging.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا