Do you want to publish a course? Click here

State transformation in photon-echo quantum memory

122   0   0.0 ( 0 )
 Added by Wolfgang Tittel
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum memory is a key element for quantum repeaters and linear optical quantum computers. In addition to memory, repeaters and computers also require manipulating quantum states by means of unitary transformations, which is generally accomplished using interferometric optical setups. We experimentally investigate photon-echo type atom-light interaction for the possibility to combine storage with controlled transformation of quantum states. As an example, we demonstrate unambiguous state discrimination of qubits and qutrits in an Ti:Er:LiNbO$_3$ waveguide cooled to 3K using states encoded into large ensembles of identically prepared photons in superposition of different temporal modes. The high robustness and flexibility of our approach makes it promising for quantum communication and computation as well as precision measurements.



rate research

Read More

138 - W. Tittel 2008
The future of long-distance quantum communication relies on the availability of quantum memory, i.e. devices that allow temporal storage of quantum information. We review research related to quantum state storage based on a photon-echo approach in rare earth ion doped crystals and glasses.
In this book chapter we review photon echo based schemes for optical quantum memory. We outline the basic principles of the Atomic Frequency Comb (AFC), Gradient Echo Memory (GEM) and Rephased Amplified Spontaneous Emission (RASE) protocols. We describe the properties of the rare-earth ion and gaseous vapours ensembles that have been used to carry out experimental demonstrations. These experiments are then discussed with reference to relevant classical and quantum performance criteria.
We report the fabrication and characterization of a Ti$^{4+}$:Tm$^{3+}$:LiNbO$_3$ optical waveguide in view of photon-echo quantum memory applications. In particular, we investigated room- and cryogenic-temperature properties via absorption, spectral hole burning, photon echo, and Stark spectroscopy. We found radiative lifetimes of 82 $mu$s and 2.4 ms for the $^3$H$_4$ and $^3$F$_4$ levels, respectively, and a 44% branching ratio from the $^3$H$_{4}$ to the $^3$F$_4$ level. We also measured an optical coherence time of 1.6 $mu$s for the $^3$H$_6leftrightarrow{}^3$H$_4$, 795 nm wavelength transition, and investigated the limitation of spectral diffusion to spectral hole burning. Upon application of magnetic fields of a few hundred Gauss, we observed persistent spectral holes with lifetimes up to seconds. Furthermore, we measured a linear Stark shift of 25 kHz$cdot$cm/V. Our results are promising for integrated, electro-optical, waveguide quantum memory for photons.
233 - S.A. Moiseev , W. Tittel 2010
We study quantum compression and decompression of light pulses that carry quantum information using a photon-echo quantum memory technique with controllable inhomogeneous broadening of an isolated atomic absorption line. We investigate media with differently broadened absorption profiles, transverse and longitudinal, finding that the recall efficiency can be as large as unity and that the quantum information encoded into the photonic qubits can remain unperturbed. Our results provide new insight into reversible light-atom interaction, and are interesting in view of future quantum communication networks, where pulse compression and decompression may play an important role to increase the qubit rate, or to map quantum information from photonic carriers with large optical bandwidth into atomic memories with smaller bandwidth.
Here we propose a solid-state quantum memory that does not require spectral holeburning, instead using strong rephasing pulses like traditional photon echo techniques. The memory uses external broadening fields to reduce the optical depth and so switch off the collective atom-light interaction when desired. The proposed memory should allow operation with reasonable efficiency in a much broader range of material systems, for instance Er3+ doped crystals which have a transition at 1.5 um. We present analytic theory supported by numerical calculations and initial experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا