Do you want to publish a course? Click here

Photon echo quantum memories in inhomogeneously broadened two level atoms

220   0   0.0 ( 0 )
 Added by David McAuslan
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we propose a solid-state quantum memory that does not require spectral holeburning, instead using strong rephasing pulses like traditional photon echo techniques. The memory uses external broadening fields to reduce the optical depth and so switch off the collective atom-light interaction when desired. The proposed memory should allow operation with reasonable efficiency in a much broader range of material systems, for instance Er3+ doped crystals which have a transition at 1.5 um. We present analytic theory supported by numerical calculations and initial experiments.



rate research

Read More

We show experimentally and describe theoretically how a conventional magnetic resonance Hahn echo sequence can lead to a self-stimulated pulse echo train when an inhomogeneously broadened spin ensemble is coupled to a resonator. Effective strong coupling between the subsystems assures that the first Hahn echo can act as a refocussing pulse on the spins, leading to self-stimulated secondary echoes. Within the framework of mean field theory, we show that this process can continue multiple times leading to a train of echoes. We introduce an analytical model that explains the shape of the first echo and numerical results that account well for the experimentally observed shape and strength of the echo train and provides insights into the collective effects involved.
A very promising recent trend in applied quantum physics is to combine the advantageous features of different quantum systems into what is called hybrid quantum technology. One of the key elements in this new field will have to be a quantum memory enabling to store quanta over extended periods of time. Systems that may fulfill the demands of such applications are comb-shaped spin ensembles coupled to a cavity. Due to the decoherence induced by the inhomogeneous ensemble broadening, the storage time of these quantum memories is, however, still rather limited. Here we demonstrate how to overcome this problem by burning well-placed holes into the spectral spin density leading to spectacular performance in the multimode regime. Specifically, we show how an initial excitation of the ensemble leads to the emission of more than a hundred well-separated photon pulses with a decay rate significantly below the fundamental limit of the recently proposed cavity protection effect.
It has recently been discovered that the optical analogue of a gradient echo in an optically thick material could form the basis of a optical memory that is both completely efficient and noise free. Here we present analytical calculation showing this is the case. There is close analogy between the operation of the memory and an optical system with two beam splitters. We can use this analogy to calculate efficiencies as a function of optical depth for a number of quantum memory schemes based on controlled inhomogeneous broadening. In particular we show that multiple switching leads to a net 100% retrieval efficiency for the optical gradient echo even in the optically thin case.
We study, theoretically and experimentally, electromagnetically induced transparency (EIT) in two different solid-state systems. Unlike many implementations in homogeneously broadened media, these systems exhibit inhomogeneous broadening of their optical and spin transitions typical of solid-state materials. We observe EIT lineshapes typical of atomic gases, including a crossover into the regime of Autler-Townes splitting, but with the substitution of the inhomogeneous widths for the homogeneous values. We obtain quantitative agreement between experiment and theory for the width of the transparency feature over a range of optical powers and inhomogeneous linewidths. We discuss regimes over which analytical and numerical treatments capture the behavior. As solid-state systems become increasingly important for scalable and integratable quantum optical and photonic devices, it is vital to understand the effects of the inhomogeneous broadening that is ubiquitous in these systems. The treatment presented here can be applied to a variety of systems, as exemplified by the common scaling of experimental results from two different systems.
In large ensembles of identical atoms or spins, the interaction with a mode of the electromagnetic radiation field concentrates in a single superradiant degree of freedom with a collectively enhanced coupling. Given a controllable inhomogeneous broadening, such ensembles may be used for multi-mode storage of quantum states of the radiation field with applications in quantum communication networks and quantum computers. In this paper we analyze how the width and shape of the inhomogeneous broadening influence the collective enhancement and the dynamics of the cavity-ensemble system with focus on the consequences for the ensembles applicability for quantum information processing tasks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا