No Arabic abstract
We examine the plausibility of crossing the cosmological constant ($L$) barrier in a two-field quintessence model of dark energy, involving a kinetic interaction between the individual fields. Such a kinetic interaction may have its origin in the four dimensional effective two-field version of the Dirac-Born-Infeld action, that describes the motion of a D3-brane in a higher dimensional space-time. We show that this interaction term could indeed enable the dark energy equation of state parameter $wx$ to cross the $L$-barrier (i.e., $wx = -1$), keeping the Hamiltonian well behaved (bounded from below), as well as satisfying the condition of stability of cosmological density perturbations, i.e., the positivity of the squares of the sound speeds corresponding to the adiabatic and entropy modes. The model is found to fit well with the latest Supernova Union data and the WMAP results. The best fit curve for $wx$ crosses -1 at red-shift $z$ in the range $sim 0.215 - 0.245$, whereas the transition from deceleration to acceleration takes place in the range of $z sim 0.56 - 0.6$. The scalar potential reconstructed using the best fit model parameters is found to vary smoothly with time, while the dark energy density nearly follows the matter density at early epochs, becomes dominant in recent past, and slowly increases thereafter without giving rise to singularities in finite future.
Bouncing models have been proposed by many authors as a completion, or even as an alternative to inflation for the description of the very early and dense Universe. However, most bouncing models contain a contracting phase from a very large and rarefied state, where dark energy might have had an important role as it has today in accelerating our large Universe. In that case, its presence can modify the initial conditions and evolution of cosmological perturbations, changing the known results already obtained in the literature concerning their amplitude and spectrum. In this paper, we assume the simplest and most appealing candidate for dark energy, the cosmological constant, and evaluate its influence on the evolution of cosmological perturbations during the contracting phase of a bouncing model, which also contains a scalar field with a potential allowing background solutions with pressure and energy density satisfying p = w*rho, w being a constant. An initial adiabatic vacuum state can be set at the end of domination by the cosmological constant, and an almost scale invariant spectrum of perturbations is obtained for w~0, which is the usual result for bouncing models. However, the presence of the cosmological constant induces oscillations and a running towards a tiny red-tilted spectrum for long wavelength perturbations.
We present here how the gravothermal or Antonovs instability, which was originally formulated in the microcanonical ensemble, is modified in the presence of a cosmological constant and in the canonical ensemble. In contrast to the microcanonical ensemble, there is a minimum, and not maximum, radius for which metastable states exist. In addition this critical radius is decreasing, and not increasing, with increasing cosmological constant. The minimum temperature for which metastable states exist is decreasing with increasing cosmological constant, while above some positive value of the cosmological constant, there appears a second critical temperature. For lower temperatures than the second critical temperature value, metastable states reappear, indicating a typical reentrant phase transition. The two critical temperatures merge when the cosmological density equals one half the mean density of the system.
It is well known that string theories naturally compactify on anti-de Sitter spaces, and yet cosmological observations show no evidence of a negative cosmological constant in the early Universes evolution. In this letter we present two simple nonlocal modifications of the standard Friedmann cosmology that can lead to observationally viable cosmologies with an initial (negative) cosmological constant. The nonlocal operators we include are toy models for the quantum cosmological backreaction. In Model I an initial quasiperiodic oscillatory epoch is followed by inflation and a late time matter era, representing a dark matter candidate. The backreaction in Model II quickly compensates the negative cosmological term such that the Ricci curvature scalar rapidly approaches zero, and the Universe ends up in a late time radiation era.
We investigate the cosmological observational test of the extended quintessence model, i.e. a scalar-tensor gravity model with a scalar field potential serving as dark energy, by using the Planck 2018 cosmic microwave background (CMB) data, together with the baryon acoustic oscillations (BAO) and redshift-space distortion (RSD) data. As an example, we consider the model with a Brans-Dicke kinetic term $frac{omega(phi)}{phi} phi_{;mu} phi^{;mu} $ and a quadratic scalar potential $V (phi) = A + B (phi - phi_0) + frac{C}{2} (phi - phi_0)^2$, which reduces to general relativity (GR) in the limit $omega(phi) to infty$, and the cosmological constant in the limit $B=C=0$. In such a model the scalar field typically rolls down the potential and oscillates around the minimum of $V (phi)$. We find that the model parameter estimate for the CMB+BAO+RSD data set is given by $lg alpha = -3.6 _{-0.54}^{+0.66}~ (68%)$, corresponding to $ 3.8 times 10^5 < omega_0 < 9.5 times 10^7~ (68%)$, and $lg C = 4.9 pm 1.4~ (68%) $. However, the GR $Lambda$CDM model can fit the data almost as good as this extended quintessence model, and is favored by the Akaike information criterion (AIC). The variation of the gravitational constant since the epoch of Recombination is constrained to be $0.97 < G_{rm rec}/G_0 < 1.03~ (1 sigma)$. In light of recent report that the CMB data favors a closed universe, we consider the case with non-flat geometry in our fit, and find that the mean value of $Omega_k$ shifts a little bit from $-0.049$ to $-0.036$, and the parameters in our model are not degenerate with $Omega_k$.
We present an Effective Field Theory based reconstruction of quintessence models of dark energy directly from cosmological data. We show that current cosmological data possess enough constraining power to test several quintessence model properties for redshifts $zin [0,1.5]$ with no assumptions about the behavior of the scalar field potential. We use measurements of the cosmic microwave background, supernovae distances, and the clustering and lensing of galaxies to constrain the evolution of the dark energy equation of state, Swampland Conjectures, the shape of the scalar field reconstructed potential, and the structure of its phase space. The standard cosmological model still remains favored by data and, within quintessence models, deviations from its expansion history are bounded to be below the 10% level at 95% confidence at any redshift below $z=1.5$.