No Arabic abstract
We have developed a new type of opposed-anvil high pressure cell with substantially improved space efficiency. The clamp cell and the gasket are made of non-magnetic Ni-Cr-Al alloy. Non-magnetic tungsten carbide (NMWC) is used for the anvils. The assembled cell with the dimension phi 29mm times 41mm is capable of generating pressure up to 9 GPa over a relatively large volume of 7 mm3. Our cell is particularly suitable for those experiments which require large sample space to achieve good signal-to-noise ratio, such as the nuclear magnetic resonance (NMR) experiment. Argon is used as the pressure transmitting medium to obtain good hydrostaticity. The pressure was calibrated in situ by measuring the fluorescence from ruby through a transparent moissanite (6H-SiC) window. We have measured the pressure and temperature dependences of the 63Cu nuclear-quadrupole-resonance (NQR) frequency of Cu2O, the in-plane Knight shift of metallic tin, and the Knight shift of platinum. These quantities can be used as reliable manometers to determine the pressure values in situ during the NMR/NQR experiments up to 9 GPa.
We have developed a much sensitve technique to conduct magnetometry under ultrahigh pressures up to 6.3~GPa, which can detect a weak volume susceptibilities as small as $sim 10^{-4}$. An opposed-anvil-type high-pressure cell is designed by numerical analysis to give nearly zero magnetic response, in a commercial SQUID magnetometer. We introduced procedures for subtracting background contributions from a high-pressure cell by taking displacements of the cell parts into account, and found a way of resolving tiny magnetism of a sample from given magnetometer response curves. A non-magnetic material, binderless tungsten carbide ceramic, is employed. To increase sample-signal-to-background ratio further, a conical shaped gasket and cupped anvils are introduced, yielding nearly ten times better space efficiency. The new set-up and analysis are applied to measure the paramagnetic susceptibilities of spin orbit entangled moment under pressures.
In this work, we investigate calcium titanate (CaTiO3 - CTO) using X-ray diffraction and Raman spectroscopy up to 60 and 55 GPa respectively. Both experiments show that the orthorhombic Pnma structure remains stable up to the highest pressures measured, in contradiction to ab-initio predictions. A fit of the compression data with a second-order Birch-Murnaghan equation of state yields a bulk modulus K0 of 181.0(6) GPa. The orthorhombic distortion is found to increase slightly with pressure, in agreement with previous experiments at lower pressures and the general rules for the evolution of perovskites under pressure. High-pressure polarized Raman spectra also enable us to clarify the Raman mode assignment of CTO and identify the modes corresponding to rigid rotation of the octahedra, A-cation shifts and Ti-O bond stretching. The Raman signature is then discussed in terms of compression mechanisms.
Basal plane resistivity of expanded graphite was studied under simultaneous influence of hydrostatic pressure up to 1.8 GPa and magnetic field 0.8 T in the 77-300 K temperature region. Magnetic field induces negative magnetoresistance in the sample within all temperature and pressure range studied. A change in resistivity of the sample under maximum pressure reaches 80%. Significant change in resistivity dependence on temperature under the pressure of 0.6 GPa suggests for ordering transition in the sample studied. Negative magnetoresistance in the graphite reaches about 15% at 0.6 GPa. Magnetic field acts in the same way as pressure and potentiates the transition formation and further magnetoresistance dynamics. The effects observed are mostly of elastic character according to resistivity of the unloaded sample.
We have constructed a pressure$-$temperature ($P-T$) phase diagram of $P$-induced superconductivity in EuFe$_2$As$_2$ single crystals, via resistivity ($rho$) measurements up to 3.2 GPa. As hydrostatic pressure is applied, an antiferromagnetic (AF) transition attributed to the FeAs layers at $T_mathrm{0}$ shifts to lower temperatures, and the corresponding resistive anomaly becomes undetectable for $P$ $ge$ 2.5 GPa. This suggests that the critical pressure $P_mathrm{c}$ where $T_mathrm{0}$ becomes zero is about 2.5 GPa. We have found that the AF order of the Eu$^{2+}$ moments survives up to 3.2 GPa without significant changes in the AF ordering temperature $T_mathrm{N}$. The superconducting (SC) ground state with a sharp transition to zero resistivity at $T_mathrm{c}$ $sim$ 30 K, indicative of bulk superconductivity, emerges in a pressure range from $P_mathrm{c}$ $sim$ 2.5 GPa to $sim$ 3.0 GPa. At pressures close to but outside the SC phase, the $rho(T)$ curve shows a partial SC transition (i.e., zero resistivity is not attained) followed by a reentrant-like hump at approximately $T_mathrm{N}$ with decreasing temperature. When nonhydrostatic pressure with a uniaxial-like strain component is applied using a solid pressure medium, the partial superconductivity is continuously observed in a wide pressure range from 1.1 GPa to 3.2 GPa.
We report ab initio calculations of the melting curve and Hugoniot of molybdenum for the pressure range 0-400 GPa, using density functional theory (DFT) in the projector augmented wave (PAW) implementation. We use the ``reference coexistence technique to overcome uncertainties inherent in earlier DFT calculations of the melting curve of Mo. Our calculated melting curve agrees well with experiment at ambient pressure and is consistent with shock data at high pressure, but does not agree with the high pressure melting curve from static compression experiments. Our calculated P(V) and T(P) Hugoniot relations agree well with shock measurements. We use calculations of phonon dispersion relations as a function of pressure to eliminate some possible interpretations of the solid-solid phase transition observed in shock experiments on Mo.