Do you want to publish a course? Click here

Modeling noise induced resonance in an excitable system: An alternative approach

105   0   0.0 ( 0 )
 Added by Md Nurujjaman
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, it is observed [Md. Nurujjaman et al, Phy. Rev. E textbf{80}, 015201 (R) (2009)] that in an excitable system, one can maintain noise induced coherency in the coherence resonance by blocking the destructive effect of the noise on the system at higher noise level. This phenomenon of constant coherence resonance (CCR) cannot be explained by the existing way of simulation of the model equations of an excitable system with added noise. In this paper, we have proposed a general model which explains the noise induced resonance phenomenon CCR as well as coherence resonance (CR) and stochastic resonance (SR). The simulation has been carried out considering the basic mechanism of noise induced resonance phenomena: noise only perturbs the system control parameter to excite coherent oscillations, taking proper precautions so that the destructive effect of noise does not affect the system. In this approach, the CR has been obtained from the interference between the system output and noise, and the SR has been obtained by adding noise and a subthreshold signal. This also explains the observation of the frequency shift of coherent oscillations in the CCR with noise level.



rate research

Read More

Collective electron transport causes a weakly coupled semiconductor superlattice under dc voltage bias to be an excitable system with $2N+2$ degrees of freedom: electron densities and fields at $N$ superlattice periods plus the total current and the field at the injector. External noise of sufficient amplitude induces regular current self-oscillations (coherence resonance) in states that are stationary in the absence of noise. Numerical simulations show that these oscillations are due to the repeated nucleation and motion of charge dipole waves that form at the emitter when the current falls below a critical value. At the critical current, the well-to-well tunneling current intersects the contact load line. We have determined the device-dependent critical current for the coherence resonance from experiments and numerical simulations. We have also described through numerical simulations how a coherence resonance triggers a stochastic resonance when its oscillation mode becomes locked to a weak ac external voltage signal. Our results agree with the experimental observations.
We demonstrated experimentally canard induced mixed mode oscillations (MMO) in an excitable glow discharge plasma, and the results are validated through numerical solution of the FitzHugh Nagumo (FHN) model. When glow discharge plasma is perturbed by applying a magnetic field, it shows mixed mode oscillatory activity, i.e., quasiperiodic small oscillations interposed with large bounded limit cycles oscillations. The initial quasiperiodic oscillations were observed to change into large amplitude limit cycle oscillations with magnetic field, and the number of these oscillation increases with increase in the magnetic field. Fourier analysis of both numerical and experimental results show that the origin of these oscillations are canard-induced phenomena, which occurs near the threshold of the control parameter. Further, the phase space plots also confirm that the oscillations are basically canard-induced MMOs.
We study the quantum probability to survive in an open chaotic system in the framework of the van Vleck-Gutzwiller propagator and present the first such calculation that accounts for quantum interference effects. Specifically we calculate quantum deviations from the classical decay after the break time for both broken and preserved time-reversal symmetry. The source of these corrections is identified in interfering pairs of correlated classical trajectories. In our approach the quantized chaotic system is modelled by a quatum graph.
175 - C.J. Tessone , H.S. Wio 2006
Here we present a study of stochastic resonance in an extended FitzHugh-Nagumo system with a field dependent activator diffusion. We show that the system response (here measured through the output signal-to-noise ratio) is enhanced due to the particular form of the non-homogeneous coupling. Such a result supports previous ones obtained in a simpler scalar reaction-diffusion system and shows that such an enhancement, induced by the field dependent diffusion -or selective coupling-, is a robust phenomenon.
348 - C.J. Tessone , A. Scire , R. Toral 2005
We develop a theory for the emergence of global firings in non-identical excitable systems subject to noise. Three different dynamical regimes arise: sub-threshold motion, where all elements remain confined near the fixed point; coherent pulsations, where a macroscopic fraction fire simultaneously; and incoherent pulsations, where units fire in a disordered fashion. We also show that the mechanism for global firing is generic: it arises from degradation of entrainment originated either by noise or by diversity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا