No Arabic abstract
It is a longstanding problem in Algebraic Geometry to determine whether the syzygy bundle $E_{d_1,...,d_n}$ on $mathbb{P}^N$ defined as the kernel of a general epimorphism [phi:mathcal{O}(-d_1)oplus...oplusmathcal{O}(-d_n) tomathcal{O}] is (semi)stable. In this thesis, attention is restricted to the case of syzygy bundles $mathrm{Syz}(f_1,...,f_n)$ on $mathbb{P}^N$ associated to $n$ generic forms $f_1,...,f_nin K[X_0,...,X_N]$ of the same degree $d$, for ${Nge2}$. The first goal is to prove that $mathrm{Syz}(f_1,...,f_n)$ is stable if [N+1le nletbinom{d+N}{N},] except for the case ${(N,n,d)=(2,5,2)}$. The second is to study moduli spaces of stable rank ${n-1}$ vector bundles on $mathbb{P}^N$ containing syzygy bundles. In a joint work with Laura Costa and Rosa Mar{i}a Miro-Roig, we prove that $N$, $d$ and $n$ are as above, then the syzygy bundle $mathrm{Syz}(f_1,...,f_n)$ is unobstructed and it belongs to a generically smooth irreducible component of dimension ${ntbinom{d+N}{N}-n^2}$, if ${Nge3}$, and ${ntbinom{d+2}{2}+ntbinom{d-1}{2}-n^2}$, if ${N=2}$. The results in chapter 3, for $Nge3$, were obtained independently by Iustin Coandu{a} in arXiv:0909.4435.
We show that given integers $N$, $d$ and $n$ such that ${Nge2}$, ${(N,d,n) e(2,2,5)}$, and ${N+1le nletbinom{d+N}{N}}$, there is a family of $n$ monomials in $K[X_0,ldots,X_N]$ of degree $d$ such that their syzygy bundle is stable. Case ${Nge3}$ was obtained independently by Coandv{a} with a different choice of families of monomials [Coa09]. For ${(N,d,n)=(2,2,5)}$, there are $5$ monomials of degree~$2$ in $K[X_0,X_1,X_2]$ such that their syzygy bundle is semistable.
We prove that the kernel bundle of the evaluation morphism of global sections, namely the syzygy bundle, of a sufficiently ample line bundle on a smooth projective variety is slope stable with respect to any polarization. This settles a conjecture of Ein-Lazarsfeld-Mustopa.
Here we consider the set of bundles ${V_n}_{ngeq 1}$ associated to the plane trinomial curves $k[x,y,z]/(h)$. We prove that the Frobenius semistability behaviour of the reduction mod $p$ of $V_n$ is a function of the congruence class of $p$ modulo $2lambda_h$ (an integer invariant associated to $h$). As one of the consequences of this, we prove that if $V_n$ is semistable in characteristic 0, then its reduction mod $p$ is strongly semistable, for $p$ in a Zariski dense set of primes. Moreover, for any given finitely many such semistable bundles $V_n$, there is a common Zariski dense set of such primes.
In char $k = p >0$, A. Langer proved a strong restriction theorem (in the style of H. Flenner) for semistable sheaves to a very general hypersurface of degree $d$, on certain varieties, with the condition that `char $k > d$. He remarked that to remove this condition, it is enough to answer either of the following questions affirmatively: {it For the syzygy bundle $sV_d$ of ${mathcal O}(d)$, is $sV_d$ semistable for arbitrary $n, d$ and $p = {char} k$?, or is there a good estimate on $mu_{max}(sV_d^*)$?} Here we prove that (1) the bundle $sV_d$ is semistable, for a certain infinite set of integers $dgeq 0$, and (2) for arbitrary $d$, there is a good enough estimate on $mu_{max}(sV_d^*)$ in terms of $d$ and $n$. In particular one obtains Langers theorem, in arbitrary characeristic.
We study the rational Chow motives of certain moduli spaces of vector bundles on a smooth projective curve with additional structure (such as a parabolic structure or Higgs field). In the parabolic case, these moduli spaces depend on a choice of stability condition given by weights; our approach is to use explicit descriptions of variation of this stability condition in terms of simple birational transformations (standard flips/flops and Mukai flops) for which we understand the variation of the Chow motives. For moduli spaces of parabolic vector bundles, we describe the change in motive under wall-crossings, and for moduli spaces of parabolic Higgs bundles, we show the motive does not change under wall-crossings. Furthermore, we prove a motivic analogue of a classical theorem of Harder and Narasimhan relating the rational cohomology of moduli spaces of vector bundles with and without fixed determinant. For rank 2 vector bundles of odd degree, we obtain formulas for the rational Chow motives of moduli spaces of semistable vector bundles, moduli spaces of Higgs bundles and moduli spaces of parabolic (Higgs) bundles that are semistable with respect to a generic weight (all with and without fixed determinant).