Do you want to publish a course? Click here

Hipparcos preliminary astrometric masses for the two close-in companions to HD 131664 and HD 43848. A brown dwarf and a low mass star

297   0   0.0 ( 0 )
 Added by Alessandro Sozzetti
 Publication date 2009
  fields Physics
and research's language is English
 Authors A. Sozzetti




Ask ChatGPT about the research

[abridged] We attempt to improve on the characterization of the properties (orbital elements, masses) of two Doppler-detected sub-stellar companions to the nearby G dwarfs HD 131664 and HD 43848. We carry out orbital fits to the Hipparcos IAD for the two stars, taking advantage of the knowledge of the spectroscopic orbits, and solving for the two orbital elements that can be determined in principle solely by astrometry, the inclination angle $i$ and the longitude of the ascending node $Omega$. A number of checks are carried out in order to assess the reliability of the orbital solutions thus obtained. The best-fit solution for HD 131664 yields $i=55pm33$ deg and $Omega=22pm28$ deg. The resulting inferred true companion mass is then $M_c = 23_{-5}^{+26}$ $M_J$. For object{HD 43848}, we find $i=12pm7$ deg and $Omega=288pm22$ deg, and $M_c = 120_{-43}^{+167}$ $M_J$. Based on the statistical evidence from an $F$-test, the study of the joint confidence intervals of variation of $i$ and $Omega$, and the comparison of the derived orbital semi-major axes with a distribution of false astrometric orbits obtained for single stars observed by Hipparcos, the astrometric signal of the two companions to HD 131664 and HD 43848 is then considered detected in the Hipparcos IAD, with a level of statistical confidence not exceeding 95%. We constrain the true mass of HD 131664b to that of a brown dwarf to within a somewhat statistically significant degree of confidence ($sim2-sigma$). For HD 43848b, a true mass in the brown dwarf regime is ruled out at the $1-sigma$ confidence level. [abridged]



rate research

Read More

The extensive timespan of modern radial velocity surveys have made the discovery of long-period substellar companions more common in recent years, however measuring the true masses of these objects remains challenging. Astrometry from the Gaia mission is expected to provide mass measurements for many of these long-period companions, but this data is not yet available. However, combining proper motion data from Gaia DR2 and the earlier Hipparcos mission makes it possible to measure true masses of substellar companions in favourable cases. In this work, we combine radial velocities with Hipparcos-Gaia astrometry to measure the true masses of two recently discovered long-period substellar companion candidates, HD 92987 B and HD 221420 b. In both cases, we find that the true masses are significantly higher than implied by radial velocities alone. A $2087 pm 19$ m s$^{-1}$ astrometric signal reveals that HD 92987 B is not close to its $17$ $M_J$ minimum mass but is instead a $0.2562 pm 0.0045$ $M_odot$ star viewed at a near-polar orbital inclination, whereas the $22.9 pm 2.2$ $M_J$ HD 221420 b can be plausibly interpreted as a high-mass super-planet or a low-mass brown dwarf. With semi-major axes of $sim$10 AU both companions are interesting targets for direct imaging, and HD 221420 b in particular would be a benchmark metal-rich substellar object if it proves possible to directly detect. Our results demonstrate the power of Hipparcos-Gaia astrometry for studying long-period planet and brown dwarf candidates discovered from radial velocity surveys.
102 - Bo Ma , Jian Ge , Alex Wolszczan 2016
We report the detections of a giant planet (MARVELS-7b) and a brown dwarf candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. It is the first close binary system with more than one substellar circum-primary companion discovered to the best of our knowledge. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using ET at Kitt Peak National Observatory, HRS at HET, the Classic spectrograph at the Automatic Spectroscopic Telescope at Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period brown dwarf in this binary. HD 87646 is a close binary with a separation of $sim22$ AU between the two stars, estimated using the Hipparcos catalogue and our newly acquired AO image from PALAO on the 200-inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has Teff = 5770$pm$80K, log(g)=4.1$pm$0.1 and [Fe/H] = $-0.17pm0.08$. The derived minimum masses of the two substellar companions of HD 87646A are 12.4$pm$0.7M$_{rm Jup}$ and 57.0$pm3.7$M$_{rm Jup}$. The periods are 13.481$pm$0.001 days and 674$pm$4 days and the measured eccentricities are 0.05$pm$0.02 and 0.50$pm$0.02 respectively. Our dynamical simulations show the system is stable if the binary orbit has a large semi-major axis and a low eccentricity, which can be verified with future astrometry observations.
81 - D. Mesa , V. DOrazi , A. Vigan 2020
The determination of the fundamental properties (mass, separation, age, gravity and atmospheric properties) of brown dwarf companions allows us to infer crucial informations on their formation and evolution mechanisms. Spectroscopy of substellar companions is available to date only for a limited number of objects (and mostly at very low resolution, R<50) because of technical limitations, i.e., contrast and angular resolution. We present medium resolution (R=350), coronagraphic long-slit spectroscopic observations with SPHERE of two substellar companions, HD 1160 B and HD 19467 B. We found that HD 1160 B has a peculiar spectrum that cannot be fitted by spectra in current spectral libraries. A good fit is possible only considering separately the Y+J and the H spectral band. The spectral type is between M5 and M7. We also estimated a T_eff of 2800-2900 K and a log(g) of 3.5-4.0 dex. The low surface gravity seems to favour young age (10-20 Myr) and low mass (~20 M Jup ) for this object. HD 19467 B is instead a fully evolved object with a T_eff of ~1000 K and log g of ~5.0 dex. Its spectral type is T6+/-1.
We report the detections of two substellar companions orbiting around evolved intermediate-mass stars from precise Doppler measurements at Subaru Telescope and Okayama Astrophysical Observatory. HD 145457 is a K0 giant with a mass of 1.9 M_sun and has a planet of minimum mass m_2sini=2.9 M_J orbiting with period of P=176 d and eccentricity of e=0.11. HD 180314 is also a K0 giant with 2.6 M_sun and hosts a substellar companion of m_2sin i=22 M_J, which falls in brown-dwarf mass regime, in an orbit with P=396 d and e=0.26. HD 145457 b is one of the innermost planets and HD 180314 b is the seventh candidate of brown-dwarf-mass companion found around intermediate-mass evolved stars.
We present comprehensive orbital analyses and dynamical masses for the substellar companions Gl~229~B, Gl~758~B, HD~13724~B, HD~19467~B, HD~33632~Ab, and HD~72946~B. Our dynamical fits incorporate radial velocities, relative astrometry, and most importantly calibrated Hipparcos-Gaia EDR3 accelerations. For HD~33632~A and HD~72946 we perform three-body fits that account for their outer stellar companions. We present new relative astrometry of Gl~229~B with Keck/NIRC2, extending its observed baseline to 25 years. We obtain a $<$1% mass measurement of $71.4 pm 0.6,M_{rm Jup}$ for the first T dwarf Gl~229~B and a 1.2% mass measurement of its host star ($0.579 pm 0.007,M_{odot}$) that agrees with the high-mass-end of the M dwarf mass-luminosity relation. We perform a homogeneous analysis of the host stars ages and use them, along with the companions measured masses and luminosities, to test substellar evolutionary models. Gl~229~B is the most discrepant, as models predict that an object this massive cannot cool to such a low luminosity within a Hubble time, implying that it may be an unresolved binary. The other companions are generally consistent with models, except for HD~13724~B that has a host-star activity age 3.8$sigma$ older than its substellar cooling age. Examining our results in context with other mass-age-luminosity benchmarks, we find no trend with spectral type but instead note that younger or lower-mass brown dwarfs are over-luminous compared to models, while older or higher-mass brown dwarfs are under-luminous. The presented mass measurements for some companions are so precise that the stellar host ages, not the masses, limit the analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا