Do you want to publish a course? Click here

Polarimetry and the Long Awaited Superoutburst of BZ UMa

182   0   0.0 ( 0 )
 Added by Aaron Price
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

BZ UMa is a cataclysmic variable star whose specific classification has eluded researchers since its discovery in 1968. It has outburst and spectral properties consistent with both U Gem class dwarf novae and intermediate polars. We present new photometric and polarimetric measurements of recent outbursts, including the first detected superoutburst of the system. Statistical analysis of these and archival data from outbursts over the past 40 years present a case for BZ UMa as a non-magnetic, U Gem class, SU-UMa subclass dwarf novae.



rate research

Read More

The results of time-resolved observations of SU UMa and U Gem obtained over two-years are presented. Both stars are prototypes of different classes of dwarf novae. We studied brightness variations on different time scales: orbital, QPO and flickering. The multicolor BVRI photometry allows to distinguisch the geometrical and physical sources of these variations.
85 - N. Vogt , E. C. Puebla , 2021
SU UMa stars are characterized by superoutbursts which are brighter at maximum light and which last much longer than the more frequent ordinary outbursts of these dwarf novae. Although there are now more than 1180 SU UMa type dwarf novae catalogued, our knowledge on their superoutburst cycle length Cso was hitherto limited to about 6$%$ of the entire sample of known SU UMa stars. Using public data bases we have determined new Cso values for a total of 206 additional SU UMa stars in the range 17 d $<$ Cso $<$ 4590 d (including some ER UMa and WZ Sge type representants) within total time intervals between 2 and 57 years, and with an estimated uncertainty of $pm$11$%$. This way, we are increasing our present knowledge of Cso values by a factor $sim$3.8. Its distribution is characterized by a broad maximum around Cso $approx$ 270 days, and slowly decreasing numbers till Cso $approx$ 800 d. The domain Cso $>$ 450 d was unexplored until now; we add here 106 cases ($sim$51$%$ of our total sample) in this range of long cycles, implying a better statistical basis for future studies of their distribution. Our sample contains 16 known WZ Sge stars, and we propose WZ Sge membership for 5 others hitherto classified as ordinary SU UMa stars. Individual superoutburst timings deviate in average about $pm$7$%$ of the cycle length from their overall linear ephemeris, conrming a pronounced quasi-periodic repeatability of superoutbursts. All relevant parameters are listed with their errors, and a table with individual superoutburst epochs of our targets is given, enabling future researchers to combine our results with other (past or future) observations.
We report on time-resolved photometry of the 2015 February-March superoutburst of QZ Virginis. The superoutburst consisted of a separated precursor, main superoutburst, and rebrightening. We detected superhumps with a period of 0.061181(42) d between the precursor and main superoutburst. Based on analyses of period changes and amplitudes of superhumps, the observed superhumps were identified as growing superhumps (stage A superhumps). The duration of stage A superhumps was about 5 d, unusually long for SU UMa-type dwarf novae. Using the obtained stage A superhump period, we estimated the mass ratio of QZ Vir to be 0.108(3). This value suggests that QZ Vir is an SU UMa-type dwarf nova evolving toward the period minimum. Based on the present and the previous observations regarding long-lasting stage A superhumps, a time scale of stage A superhumps is likely to be determined by the mass ratio of the system and the temperature of the accretion disk.
We photometrically observed the 2003 June superoutburst of GO Gom. The mean superhump period was 0.063059(13) d. The resultant data revealed that (1) the obtained light curve contained a precursor, (2) a plateau stage of the object lasted 8 days, which is remarkably shorter than that of ordinary SU UMa-type dwarf novae, and (3) the amplitude of the superoutburst was less than 5 mag, which is unpredictably small when taking into account the fact that the supercycle of GO Com is about 2800 days. In order to explain these anomalies, a mass elimination process from the accretion disk, such as evaporation, may play an important role.
We present a polarimetric analysis of 49 long-period pulsars discovered as part of the High Time Resolution Universe (HTRU) southern survey. The sources exhibit the typical characteristics of old pulsars, with low fractional linear and circular polarisation and narrow, multicomponent profiles. Although the position angle swings are generally complex, for two of the analysed pulsars (J1622-3751 and J1710-2616) we obtained an indication of the geometry via the rotating vector model. We were able to determine a value of the rotation measure (RM) for 34 of the sources which, when combined with their dispersion measures (DM), yields an integrated magnetic field strength along the line of sight. With the data presented here, the total number of values of RM associated to pulsars discovered during the HTRU southern survey sums to 51. The RMs are not consistent with the hypothesis of a counter-clockwise direction of the Galactic magnetic field within an annulus included between 4 and 6 kpc from the Galactic centre. A partial agreement with a counter-clockwise sense of the Galactic magnetic field within the spiral arms is however found in the area of the Carina-Sagittarius arm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا