Do you want to publish a course? Click here

Neutron Stars and Gamma Ray Bursts with LOFAR

97   0   0.0 ( 0 )
 Added by Joeri van Leeuwen
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

LOFAR, the Low Frequency Array, is an innovative new radio telescope currently under construction in the Netherlands. With its continuous monitoring of the radio sky we expect LOFAR will detect many new transient events, including GRB afterglows and pulsating/single-burst neutron stars. We here describe all-sky surveys ranging from a time resolution of microseconds to a cadence span of years.



rate research

Read More

Three-dimensional hydrodynamical simulations are presented for the direct head-on or off-center collision of two neutron stars, employing a basically Newtonian PPM code but including the emission of gravitational waves and their back-reaction on the hydrodynamical flow. A physical nuclear equation of state is used that allows us to follow the thermodynamical evolution of the stellar matter and to compute the emission of neutrinos. Predicted gravitational wave signals, luminosities and waveforms, are presented. The models are evaluated for their implications for gamma-ray burst scenarios. We find an extremely luminous outburst of neutrinos with a peak luminosity of more than 4E54 erg/s for several milliseconds. This leads to an efficiency of about 1% for the annihilation of neutrinos with antineutrinos, corresponding to an average energy deposition rate of more than 1E52 erg/s and a total energy of about 1E50 erg deposited in electron-positron pairs around the collision site within 10ms. Although these numbers seem very favorable for gamma-ray burst scenarios, the pollution of the $e^pm$ pair-plasma cloud with nearly 0.1$M_{odot}$ of dynamically ejected baryons is 5 orders of magnitude too large. Therefore the formation of a relativistically expanding fireball that leads to a gamma-ray burst powered by neutrino emission from colliding neutron stars is definitely ruled out.
Time-resolved spectra of six short gamma-ray bursts (sGRBs), measured by the {em Swift} telescope, are used to estimate the parameters of a plerion-like model of the X-ray afterglow. The unshrouded, optically thin component of the afterglow is modelled as emanating from an expanding bubble of relativistic, shock-accelerated electrons fuelled by a central object. The electrons are injected with a power-law distribution and cool mainly by synchrotron losses. We compute posteriors for model parameters describing the central engine (e.g. spin frequency at birth, magnetic field strength) and shock acceleration (e.g. power-law index, minimum injection energy). It is found that the central engine is compatible with a millisecond magnetar, and the shock physics is compatible with what occurs in Galactic supernova remnants, assuming standard magnetic field models for the magnetar wind. Separately, we allow the magnetic field to vary arbitrarily and infer that it is roughly constant and lower in magnitude than the wind-borne extension of the inferred magnetar field. This may be due to the expansion history of the bubble, or the magnetization of the circumstellar environment of the sGRB progenitor.
45 - B. Paczynski 2005
Long gamma-ray bursts (GRBs) are believed to be related to the explosion of type Ic supernovae, which have been stripped of their hydrogen and helium envelopes. There appear to be two types of these explosions: those which are approximately spherical (GRB980425/1998bw), and which are associated with weak bursts, and the classical GRBs which generate ultrarelativistic jets (GRB030329/SN2003dh). If this bimodality is real Swift will provide a clear evidence for it. We propose that classical powerful GRBs, which generate ultrarelativistic outflows, are a result of a formation of quark stars. Quark stars may provide an additional energy for the explosion of SN Ic, but far more important is a creation of a surface which acts as a membrane which cannot be penetrated by baryons. A surface of a quark star allows only ultrarelativistic matter to escape: photons, neutrinos, electron -- positron pairs and magnetic fields. The formation of a quark star follows the initial core collapse in several minutes. Possible evidence for this time delay is provided by BATSE precursors to GRBs, as analyzed by Lazzati (2005).
We present a detailed analysis of two well-localized, highly offset short gamma-ray bursts---GRB~070809 and GRB~090515---investigating the kinematic evolution of their progenitors from compact object formation until merger. Calibrating to observations of their most probable host galaxies, we construct semi-analytic galactic models that account for star formation history and galaxy growth over time. We pair detailed kinematic evolution with compact binary population modeling to infer viable post-supernova velocities and inspiral times. By populating binary tracers according to the star formation history of the host and kinematically evolving their post-supernova trajectories through the time-dependent galactic potential, we find that systems matching the observed offsets of the bursts require post-supernova systemic velocities of hundreds of kilometers per second. Marginalizing over uncertainties in the stellar mass--halo mass relation, we find that the second-born neutron star in the GRB~070809 and GRB~090515 progenitor systems received a natal kick of $gtrsim 200~mathrm{km,s}^{-1}$ at the 78% and 91% credible levels, respectively. Applying our analysis to the full catalog of localized short gamma-ray bursts will provide unique constraints on their progenitors and help unravel the selection effects inherent to observing transients that are highly offset with respect to their hosts.
62 - Y.F. Huang , Z.G. Dai , T. Lu 2003
The idea that gamma-ray bursts might be a kind of phenomena associated with neutron star kicks was first proposed by Dar & Plaga (1999). Here we study this mechanism in more detail and point out that the neutron star should be a high speed one (with proper motion larger than $sim 1000$ km/s). It is shown that the model agrees well with observations in many aspects, such as the energetics, the event rate, the collimation, the bimodal distribution of durations, the narrowly clustered intrinsic energy, and the association of gamma-ray bursts with supernovae and star forming regions. We also discuss the implications of this model on the neutron star kick mechanism, and suggest that the high kick speed were probably acquired due to the electromagnetic rocket effect of a millisecond magnetar with an off-centered magnetic dipole.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا