Do you want to publish a course? Click here

The number of cycles of specified normalized length in permutations

118   0   0.0 ( 0 )
 Added by Michael Lugo
 Publication date 2009
  fields
and research's language is English
 Authors Michael Lugo




Ask ChatGPT about the research

We compute the limiting distribution, as n approaches infinity, of the number of cycles of length between gamma n and delta n in a permutation of [n] chosen uniformly at random, for constants gamma, delta such that 1/(k+1) <= gamma < delta <= 1/k for some integer k. This distribution is supported on {0, 1, ... k} and has 0th, 1st, ..., kth moments equal to those of a Poisson distribution with parameter log (delta/gamma). For more general choices of gamma, delta we show that such a limiting distribution exists, which can be given explicitly in terms of certain integrals over intersections of hypercubes with half-spaces; these integrals are analytically intractable but a recurrence specifying them can be given. The results herein provide a basis of comparison for similar statistics on restricted classes of permutations.



rate research

Read More

189 - R. Glebov , M. Krivelevich 2012
We prove that the number of Hamilton cycles in the random graph G(n,p) is n!p^n(1+o(1))^n a.a.s., provided that pgeq (ln n+ln ln n+omega(1))/n. Furthermore, we prove the hitting-time version of this statement, showing that in the random graph process, the edge that creates a graph of minimum degree 2 creates (ln n/e)^n(1+o(1))^n Hamilton cycles a.a.s.
Let $mathbb{F}_q$ be a finite field of odd characteristic. We study Redei functions that induce permutations over $mathbb{P}^1(mathbb{F}_q)$ whose cycle decomposition contains only cycles of length $1$ and $j$, for an integer $jgeq 2$. When $j$ is $4$ or a prime number, we give necessary and sufficient conditions for a Redei permutation of this type to exist over $mathbb{P}^1(mathbb{F}_q)$, characterize Redei permutations consisting of $1$- and $j$-cycles, and determine their total number. We also present explicit formulas for Redei involutions based on the number of fixed points, and procedures to construct Redei permutations with a prescribed number of fixed points and $j$-cycles for $j in {3,4,5}$.
218 - Michael Lugo 2009
This paper develops an analogy between the cycle structure of, on the one hand, random permutations with cycle lengths restricted to lie in an infinite set $S$ with asymptotic density $sigma$ and, on the other hand, permutations selected according to the Ewens distribution with parameter $sigma$. In particular we show that the asymptotic expected number of cycles of random permutations of $[n]$ with all cycles even, with all cycles odd, and chosen from the Ewens distribution with parameter 1/2 are all ${1 over 2} log n + O(1)$, and the variance is of the same order. Furthermore, we show that in permutations of $[n]$ chosen from the Ewens distribution with parameter $sigma$, the probability of a random element being in a cycle longer than $gamma n$ approaches $(1-gamma)^sigma$ for large $n$. The same limit law holds for permutations with cycles carrying multiplicative weights with average $sigma$. We draw parallels between the Ewens distribution and the asymptotic-density case and explain why these parallels should exist using permutations drawn from weighted Boltzmann distributions.
We study the asymptotic behavior of the maximum number of directed cycles of a given length in a tournament: let $c(ell)$ be the limit of the ratio of the maximum number of cycles of length $ell$ in an $n$-vertex tournament and the expected number of cycles of length $ell$ in the random $n$-vertex tournament, when $n$ tends to infinity. It is well-known that $c(3)=1$ and $c(4)=4/3$. We show that $c(ell)=1$ if and only if $ell$ is not divisible by four, which settles a conjecture of Bartley and Day. If $ell$ is divisible by four, we show that $1+2cdotleft(2/piright)^{ell}le c(ell)le 1+left(2/pi+o(1)right)^{ell}$ and determine the value $c(ell)$ exactly for $ell = 8$. We also give a full description of the asymptotic structure of tournaments with the maximum number of cycles of length $ell$ when $ell$ is not divisible by four or $ellin{4,8}$.
In this note we investigate correlation inequalities for `up-sets of permutations, in the spirit of the Harris--Kleitman inequality. We focus on two well-studied partial orders on $S_n$, giving rise to differing notions of up-sets. Our first result shows that, under the strong Bruhat order on $S_n$, up-sets are positively correlated (in the Harris--Kleitman sense). Thus, for example, for a (uniformly) random permutation $pi$, the event that no point is displaced by more than a fixed distance $d$ and the event that $pi$ is the product of at most $k$ adjacent transpositions are positively correlated. In contrast, under the weak Bruhat order we show that this completely fails: surprisingly, there are two up-sets each of measure $1/2$ whose intersection has arbitrarily small measure. We also prove analogous correlation results for a class of non-uniform measures, which includes the Mallows measures. Some applications and open problems are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا