Do you want to publish a course? Click here

General Theory of the Zitterbewegung

110   0   0.0 ( 0 )
 Added by Jozsef Cserti
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive a general and simple expression for the time-dependence of the position operator of a multi-band Hamiltonian with arbitrary matrix elements depending only on the momentum of the quasi-particle. Our result shows that in such systems the Zitterbewegung like term related to a trembling motion of the quasi-particle, always appears in the position operator. Moreover, the Zitterbewegung is, in general, a multi-frequency oscillatory motion of the quasi-particle. We derive a few different expressions for the amplitude of the oscillatory motion including that related to the Berry connection matrix. We present several examples to demonstrate how general and versatile our result is.



rate research

Read More

The dynamics of itinerant electrons in topological insulator (TI) thin films is investigated using a multi-band decomposition approach. We show that the electron trajectory in the 2D film is anisotropic and confined within a characteristic region. Remarkably, the confinement and anisotropy of the electron trajectory are associated with the topological phase transition of the TI system, which can be controlled by tuning the film thickness and/or applying an in-plane magnetic field. Moreover, persistent electron wavepacket oscillation can be achieved in the TI thin film system at the phase transition point, which may assist in the experimental detection of the jitter motion (Zitterbewegung). The implications of the microscopic picture of electron motion in explaining other transport-related effects, e.g., electron-mediated RKKY coupling in the TI thin film system, are also discussed.
Zitterbewegung is a striking consequence of relativistic quantum mechanics which predicts that free Dirac electrons exhibit a rapid trembling motion even in the absence of external forces. The trembling motion of an electron results from the interference between the positive and the negative-energy solutions of the Dirac equation, separated by one MeV, leading to oscillations at extremely high frequencies which are out of reach experimentally. Recently, it was shown theoretically that electrons in III-V semiconductors are governed by similar equations in the presence of spin-orbit coupling. The small energy splittings up to meV result in Zitterbewegung at much smaller frequencies which should be experimentally accessible as an AC current. Here, we demonstrate the Zitterbewegung of electrons in a solid. We show that coherent electron Zitterbewegung can be triggered by initializing an ensemble of electrons in the same spin states in strained n-InGaAs and is probed as an AC current at GHz frequencies. Its amplitude is shown to increase linearly with both the spin-orbit coupling strength and the Larmor frequency of the external magnetic field. The latter dependence is the hallmark of the dynamical generation mechanism of the oscillatory motion of the Zitterbewegung. Our results demonstrate that relativistic quantum mechanics can be studied in a rather simple solid state system at moderate temperatures. Furthermore, the large amplitude of the AC current at high precession frequencies enables ultra-fast spin sensitive electric read-out in solids.
We propose an optical lattice scheme which would permit the experimental observation of Zitterbewegung (ZB) with ultracold, neutral atoms. A four-level tripod variant of the usual setup for stimulated Raman adiabatic passage (STIRAP) has been proposed for generating non-Abelian gauge fields [1]. Dirac-like Hamiltonians, which exhibit ZB, are simple examples of such non-Abelian gauge fields; we show how a variety of them can arise, and how ZB can be observed, in a tripod system. We predict that the ZB should occur at experimentally accessible frequencies and amplitudes.
The theoretical interpretation of measurements of wavefunctions and spectra in electromagnetic cavities excited by antennas is considered. Assuming that the characteristic wavelength of the field inside the cavity is much larger than the radius of the antenna, we describe antennas as point-like perturbations. This approach strongly simplifies the problem reducing the whole information on the antenna to four effective constants. In the framework of this approach we overcame the divergency of series of the phenomenological scattering theory and justify assumptions lying at the heart of wavefunction measurements. This selfconsistent approach allowed us to go beyond the one-pole approximation, in particular, to treat the experiments with degenerated states. The central idea of the approach is to introduce ``renormalized Green function, which contains the information on boundary reflections and has no singularity inside the cavity.
In order to achieve the high-fidelity quantum control needed for a broad range of quantum information technologies, reducing the effects of noise and system inhomogeneities is an essential task. It is well known that a system can be decoupled from noise or made insensitive to inhomogeneous dephasing dynamically by using carefully designed pulse sequences based on square or delta-function waveforms such as Hahn spin echo or CPMG. However, such ideal pulses are often challenging to implement experimentally with high fidelity. Here, we uncover a new geometrical framework for visualizing all possible driving fields, which enables one to generate an unlimited number of smooth, experimentally feasible pulses that perform dynamical decoupling or dynamically corrected gates to arbitrarily high order. We demonstrate that this scheme can significantly enhance the fidelity of single-qubit operations in the presence of noise and when realistic limitations on pulse rise times and amplitudes are taken into account.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا