No Arabic abstract
A resolution of the Abraham-Minkowski dilemma is presented that other constant velocities can play the role of c in the theory of relativity. For example, in 2005 electrons of graphene were discovered to behave as if the coefficient is a Fermi velocity. Then we propose a conjecture for neutrinos to avoid the contradiction among two-component theory, negative rest mass-square and oscillation.
We consider the impact of neutral-current (NC) non-standard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle $theta_{12}$ at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence, solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-one corrections from NSI to the NC neutrino--quark interaction and can be tested in neutrino--nucleus NC scattering experiments.
Proposed medium-baseline reactor neutrino experiments offer unprecedented opportunities to probe, at the same time, the mass-mixing parameters which govern $ u_e$ oscillations both at short wavelength (delta m^2 and theta_{12}) and at long wavelength (Delta m^2 and theta_{13}), as well as their tiny interference effects related to the mass hierarchy (i.e., the relative sign of Delta m^2 and delta m^2). In order to take full advantage of these opportunities, precision calculations and refined statistical analyses of event spectra are required. In such a context, we revisit several input ingredients, including: nucleon recoil in inverse beta decay and its impact on energy reconstruction and resolution, hierarchy and matter effects in the oscillation probability, spread of reactor distances, irreducible backgrounds from geoneutrinos and from far reactors, and degeneracies between energy scale and spectrum shape uncertainties. We also introduce a continuous parameter alpha, which interpolates smoothly between normal hierarchy (alpha=+1) and inverted hierarchy (alpha=-1). The determination of the hierarchy is then transformed from a test of hypothesis to a parameter estimation, with a sensitivity given by the distance of the true case (either alpha=+1 or alpha=-1) from the undecidable case (alpha=0). Numerical experiments are performed for the specific set up envisaged for the JUNO project, assuming a realistic sample of O(10^5) reactor events. We find a typical sensitivity of ~2 sigma to the hierarchy in JUNO, which, however, can be challenged by energy scale and spectrum shape systematics, whose possible conspiracy effects are investigated. The prospective accuracy reachable for the other mass-mixing parameters is also discussed.
The neutrino oscillations probabilities depend on mass squared differences; in the case of 3-neutrino mixing, there are two independent differences, which have been measured experimentally. In order to calculate the absolute masses of neutrinos, we have conjectured a third relation, in the form of a sum of squared masses. The calculated masses look plausible and are in good agreement with the upper bounds coming from astrophysics.
Neutrino Physics is a mature branch of science with all the three neutrino mixing angles and two mass squared differences determined with high precision. Inspite of several experimental verifications of neutrino oscillations and precise measurements of two mass squared differences and the three mixing angles, the unitarity of the leptonic mixing matrix is not yet established, leaving room for the presence of small non-unitarity effects. Deriving the bounds on these non-unitarity parameters from existing experimental constraints, on cLFV decays such as, $ murightarrow egamma $, $ murightarrow taugamma $, $ taurightarrow egamma $, we study their effects on the generation of baryon asymmetry through leptogenesis and neutrino oscillation probabilities. We consider a model where see-saw is extended by an additional singlet $ S $ which is very light, but can give rise to non-unitarity effects without affecting the form on see-saw formula. We do a parameter scan of a minimal see-saw model in a type I see-saw framework satisfying the Planck data on baryon to photon ratio of the Universe, which lies in the interval, $5.8times 10^ {-10} < Y _{B} < 6.6 times 10^ {-10} (BBN)$. We predict values of lightest neutrino mass, and Dirac and Majorana CP-violating phase $ delta_{CP} $, $ alpha $ and $ beta $, for normal hierarchy and inverted hierarchy for one flavor leptogenesis. It is worth mentioning that all these four quantities are unknown yet, and future experiments will be measuring them.
Recent Super-Kamiokande data on the atmospheric neutrino anomaly are used to test various mechanisms for neutrino oscillations. It is found that the current atmospheric neutrino data alone cannot rule out any particular mechanism. Future long-baseline experiments should play an important role in identifying the underlying neutrino oscillation mechanism.