Do you want to publish a course? Click here

Walkers on the circle

106   0   0.0 ( 0 )
 Added by Jan Kriz
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally demonstrate that the statistical properties of distances between pedestrians which are hindered from avoiding each other are described by the Gaussian Unitary Ensemble of random matrices. The same result has recently been obtained for an $n$-tuple of non-intersecting (one-dimensional, unidirectional) random walks. Thus, the observed behavior of autonomous walkers conditioned not to cross their trajectories (or, in other words, to stay in strict order at any time) resembles non-intersecting random walks.



rate research

Read More

Power grid frequency control is a demanding task requiring expensive idle power plants to adapt the supply to the fluctuating demand. An alternative approach is controlling the demand side in such a way that certain appliances modify their operation to adapt to the power availability. This is specially important to achieve a high penetration of renewable energy sources. A number of methods to manage the demand side have been proposed. In this work we focus on dynamic demand control (DDC), where smart appliances can delay their switchings depending on the frequency of the system. We introduce a simple model to study the effects of DDC on the frequency of the power grid. The model includes the power plant equations, a stochastic model for the demand that reproduces, adjusting a single parameter, the statistical properties of frequency fluctuations measured experimentally, and a generic DDC protocol. We find that DDC can reduce small and medium size fluctuations but it can also increase the probability of observing large frequency peaks due to the necessity of recovering pending task. We also conclude that a deployment of DDC around 30-40% already allows a significant reduction of the fluctuations while keeping the number of pending tasks low.
We report on the existing connection between power-law distributions and allometries. As it was first reported in [PLoS ONE 7, e40393 (2012)] for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income, sanitation and unemployment). Our analysis reveals that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residuals fluctuations surrounding the allometries are characterized by an almost constant variance and log-normal distributions.
173 - Jiuhua Zhao , Qipeng Liu , 2014
We consider a dynamical network model in which two competitors have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. The state of each normal agent converges to a steady value which is a convex combination of the competitors states, and is independent of the initial states of agents. This implies that the competition result is fully determined by the network structure and positions of competitors in the network. We compute an Influence Matrix (IM) in which each element characterizing the influence of an agent on another agent in the network. We use the IM to predict the bias of each normal agent and thus predict which competitor will win. Furthermore, we compare the IM criterion with seven node centrality measures to predict the winner. We find that the competitor with higher Katz Centrality in an undirected network or higher PageRank in a directed network is much more likely to be the winner. These findings may shed new light on the role of network structure in competition and to what extent could competitors adjust network structure so as to win the competition.
Based on signaling process on complex networks, a method for identification community structure is proposed. For a network with $n$ nodes, every node is assumed to be a system which can send, receive, and record signals. Each node is taken as the initial signal source once to inspire the whole network by exciting its neighbors and then the source node is endowed a $n$d vector which recording the effects of signaling process. So by this process, the topological relationship of nodes on networks could be transferred into the geometrical structure of vectors in $n$d Euclidian space. Then the best partition of groups is determined by $F$-statistic and the final community structure is given by Fuzzy $C$-means clustering method (FCM). This method can detect community structure both in unweighted and weighted networks without any extra parameters. It has been applied to ad hoc networks and some real networks including Zachary Karate Club network and football team network. The results are compared with that of other approaches and the evidence indicates that the algorithm based on signaling process is effective.
80 - Hyewon Kim , Meesoon Ha , 2019
To provide a comprehensive view for dynamics of and on many real-world temporal networks, we investigate the interplay of temporal connectivity patterns and spreading phenomena, in terms of the susceptible-infected-removed (SIR) model on the modified activity-driven temporal network (ADTN) with memory. In particular, we focus on how the epidemic threshold of the SIR model is affected by the heterogeneity of nodal activities and the memory strength in temporal and static regimes, respectively. While strong ties (memory) between nodes inhibit the spread of epidemic to be localized, the heterogeneity of nodal activities enhances it to be globalized initially. Since the epidemic threshold of the SIR model is very sensitive to the degree distribution of nodes in static networks, we test the SIR model on the modified ADTNs with the possible set of the activity exponents and the memory exponents that generates the same degree distributions in temporal networks. We also discuss the role of spatiotemporal scaling properties of the largest cluster and the maximum degree in the epidemic threshold. It is observed that the presence of highly active nodes enables to trigger the initial spread of epidemic in a short period of time, but it also limits its final spread to the entire network. This implies that there is the trade-off between the spreading time of epidemic and its outbreak size. Finally, we suggest the phase diagram of the SIR model on ADTNs and the optimal condition for the spread of epidemic under the circumstances.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا