A bulk left-handed metamaterial with fishnet structure is investigated to show the optical loss compensation via surface plasmon amplification, with the assistance of a Gaussian gain in PbS quantum dots. The optical resonance enhancement around 200 THz is confirmed by the retrieval method. By exploring the dependence of propagation loss on the gain coefficient and metamaterial thickness, we verify numerically that the left-handed response can endure a large propagation thickness with ultralow and stable loss under a certain gain coefficient.
Left-handed metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Here we consider the quantum physics of such devices. We show that the Casimir force of two conducting plates may turn from attraction to repulsion if a perfect lens is sandwiched between them. For optical left-handed metamaterials this repulsive force of the quantum vacuum may levitate ultra-thin mirrors.
We report the suppression of loss of surface plasmon polariton propagating at the interface between silver film and optically pumped polymer with dye. Large magnitude of the effect enables a variety of applications of active nanoplasmonics. The experimental study is accompanied by the development of the analytical description of the phenomenon and the solution of the controversy regarding the direction of the wavevector of a wave with a strong evanescent component in an active medium.
By studying the rotations of the polarization of light propagating in right and left handed films, with emphasis on the transmission (Faraday effect) and reflec- tions (Kerr effect) of light and through the use of complex values representing the rotations, it can be shown that the real portions of the complex angle of Faraday and Kerr rotations are odd functions with respect to the refractive index n and that the respective imaginary portions of the angles are an even function of n. Multiple reflections within the medium lead to the maximums of the real portions of Faraday and Kerr effects to not coincide with zero ellipticity. It will also be shown that in the thin film case with left handed materials there are large resonant enhancements of the reflected Kerr angle that could be obtained experimentally.
In the present work, we examine a prototypical model for the formation of bright breathers in nonlinear left-handed metamaterial lattices. Utilizing the paradigm of nonlinear transmission lines, we build a relevant lattice and develop a quasi-continuum multiscale approximation that enables us to appreciate both the underlying linear dispersion relation and the potential for bifurcation of nonlinear states. We focus here, more specifically, on bright discrete breathers which bifurcate from the lower edge of the linear dispersion relation at wavenumber $k=pi$. Guided by the multiscale analysis, we calculate numerically both the stable inter-site centered and the unstable site-centered members of the relevant family. We quantify the associated stability via Floquet analysis and the Peierls-Nabarro barrier of the energy difference between these branches. Finally, we explore the dynamical implications of these findings towards the potential mobility or lack thereof (pinning) of such breather solutions.
Metamaterial resonant structures made from arrays of superconducting lumped circuit elements can exhibit microwave mode spectra with left-handed dispersion, resulting in a high density of modes in the same frequency range where superconducting qubits are typically operated, as well as a bandgap at lower frequencies that extends down to dc. Using this novel regime for multi-mode circuit quantum electrodynamics, we have performed a series of measurements of such a superconducting metamaterial resonator coupled to a flux-tunable transmon qubit. Through microwave measurements of the metamaterial, we have observed the coupling of the qubit to each of the modes that it passes through. Using a separate readout resonator, we have probed the qubit dispersively and characterized the qubit energy relaxation as a function of frequency, which is strongly affected by the Purcell effect in the presence of the dense mode spectrum. Additionally, we have investigated the ac Stark shift of the qubit as the photon number in the various metamaterial modes is varied. The ability to tailor the dense mode spectrum through the choice of circuit parameters and manipulate the photonic state of the metamaterial through interactions with qubits makes this a promising platform for analog quantum simulation and quantum memories.