Do you want to publish a course? Click here

Bright Breathers in Nonlinear Left-Handed Metamaterial Lattices

96   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the present work, we examine a prototypical model for the formation of bright breathers in nonlinear left-handed metamaterial lattices. Utilizing the paradigm of nonlinear transmission lines, we build a relevant lattice and develop a quasi-continuum multiscale approximation that enables us to appreciate both the underlying linear dispersion relation and the potential for bifurcation of nonlinear states. We focus here, more specifically, on bright discrete breathers which bifurcate from the lower edge of the linear dispersion relation at wavenumber $k=pi$. Guided by the multiscale analysis, we calculate numerically both the stable inter-site centered and the unstable site-centered members of the relevant family. We quantify the associated stability via Floquet analysis and the Peierls-Nabarro barrier of the energy difference between these branches. Finally, we explore the dynamical implications of these findings towards the potential mobility or lack thereof (pinning) of such breather solutions.



rate research

Read More

142 - David Cubero , Jesus Cuevas , 2009
By applying a staggered driving force in a prototypical discrete model with a quartic nonlinearity, we demonstrate the spontaneous formation and destruction of discrete breathers with a selected frequency due to thermal fluctuations. The phenomenon exhibits the striking features of stochastic resonance (SR): a nonmonotonic behavior as noise is increased and breather generation under subthreshold conditions. The corresponding peak is associated with a matching between the external driving frequency and the breather frequency at the average energy given by ambient temperature.
In the present work, we explore soliton and rogue-like wave solutions in the transmission line analogue of a nonlinear left-handed metamaterial. The nonlinearity is expressed through a voltagedependent and symmetric capacitance motivated by the recently developed ferroelectric barium strontium titanate (BST) thin film capacitor designs. We develop both the corresponding nonlinear dynamical lattice, as well as its reduction via a multiple scales expansion to a nonlinear Schrodinger (NLS) model for the envelope of a given carrier wave. The reduced model can feature either a focusing or a defocusing nonlinearity depending on the frequency (wavenumber) of the carrier. We then consider the robustness of different types of solitary waves of the reduced model within the original nonlinear left-handed medium. We find that both bright and dark solitons persist in a suitable parametric regime, where the reduction to the NLS is valid. Additionally, for suitable initial conditions, we observe a rogue wave type of behavior, that differs significantly from the classic Peregrine rogue wave evolution, including most notably the breakup of a single Peregrine-like pattern into solutions with multiple wave peaks. Finally, we touch upon the behavior of generalized members of the family of the Peregrine solitons, namely Akhmediev breathers and Kuznetsov-Ma solitons, and explore how these evolve in the left-handed transmission line.
We study the properties of discrete breathers, also known as intrinsic localized modes, in the one-dimensional Frenkel-Kontorova lattice of oscillators subject to damping and external force. The system is studied in the whole range of values of the coupling parameter, from C=0 (uncoupled limit) up to values close to the continuum limit (forced and damped sine-Gordon model). As this parameter is varied, the existence of different bifurcations is investigated numerically. Using Floquet spectral analysis, we give a complete characterization of the most relevant bifurcations, and we find (spatial) symmetry-breaking bifurcations which are linked to breather mobility, just as it was found in Hamiltonian systems by other authors. In this way moving breathers are shown to exist even at remarkably high levels of discreteness. We study mobile breathers and characterize them in terms of the phonon radiation they emit, which explains successfully the way in which they interact. For instance, it is possible to form ``bound states of moving breathers, through the interaction of their phonon tails. Over all, both stationary and moving breathers are found to be generic localized states over large values of $C$, and they are shown to be robust against low temperature fluctuations.
Metamaterial resonant structures made from arrays of superconducting lumped circuit elements can exhibit microwave mode spectra with left-handed dispersion, resulting in a high density of modes in the same frequency range where superconducting qubits are typically operated, as well as a bandgap at lower frequencies that extends down to dc. Using this novel regime for multi-mode circuit quantum electrodynamics, we have performed a series of measurements of such a superconducting metamaterial resonator coupled to a flux-tunable transmon qubit. Through microwave measurements of the metamaterial, we have observed the coupling of the qubit to each of the modes that it passes through. Using a separate readout resonator, we have probed the qubit dispersively and characterized the qubit energy relaxation as a function of frequency, which is strongly affected by the Purcell effect in the presence of the dense mode spectrum. Additionally, we have investigated the ac Stark shift of the qubit as the photon number in the various metamaterial modes is varied. The ability to tailor the dense mode spectrum through the choice of circuit parameters and manipulate the photonic state of the metamaterial through interactions with qubits makes this a promising platform for analog quantum simulation and quantum memories.
We study the existence and stability of multisite discrete breathers in two prototypical non-square Klein-Gordon lattices, namely a honeycomb and a hexagonal one. In the honeycomb case we consider six-site configurations and find that for soft potential and positive coupling the out-of-phase breather configuration and the charge-two vortex breather are linearly stable, while the in-phase and charge-one vortex states are unstable. In the hexagonal lattice, we first consider three-site configurations. In the case of soft potential and positive coupling, the in-phase configuration is unstable and the charge-one vortex is linearly stable. The out-of-phase configuration here is found to always be linearly unstable. We then turn to six-site configurations in the hexagonal lattice. The stability results in this case are the same as in the six-site configurations in the honeycomb lattice. For all configurations in both lattices, the stability results are reversed in the setting of either hard potential or negative coupling. The study is complemented by numerical simulations which are in very good agreement with the theoretical predictions. Since neither the form of the on-site potential nor the sign of the coupling parameter involved have been prescribed, this description can accommodate inverse-dispersive systems (e.g., supporting backward waves) such as transverse dust-lattice oscillations in dusty plasma (Debye) crystals or analogous modes in molecular chains.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا