Do you want to publish a course? Click here

Quark-hadron phase transition in a neutron star under strong magnetic fields

104   0   0.0 ( 0 )
 Added by Aziz Rabhi
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We study the effect of a strong magnetic field on the properties of neutron stars with a quark-hadron phase transition. It is shown that the magnetic field prevents the appearance of a quark phase, enhances the leptonic fraction, decreases the baryonic density extension of the mixed phase and stiffens the total equation of state, including both the stellar matter and the magnetic field contributions. Two parametrisations of a density dependent static magnetic field, increasing, respectively, fast and slowly with the density and reaching $2-4times 10^{18}$G in the center of the star, are considered. The compact stars with strong magnetic fields have maximum mass configurations with larger masses and radius and smaller quark fractions. The parametrisation of the magnetic field with density has a strong influence on the star properties.



rate research

Read More

258 - D.P.Menezes 2008
In the present work we use the large-$N_c$ approximation to investigate quark matter described by the SU(2) Nambu--Jona-Lasinio model subject to a strong magnetic field. The Landau levels are filled in such a way that usual kinks appear in the effective mass and other related quantities. $beta$-equilibrium is also considered and the macroscopic properties of a magnetar described by this quark matter is obtained. Our study shows that the magnetar masses and radii are larger if the magnetic field increases but only very large fields ($ge 10^{18}$ G) affect the EoS in a non negligible way.
We aim at drawing the hadron-quark phase transition line in the QCD phase diagram by using the two phase model (TPM) in which the entanglement Polyakov-loop extended Nambu--Jona-Lasinio (EPNJL) model with vector-type four-quark interaction is used for the quark phase and the relativistic mean field (RMF) model is for the hadron phase. Reasonable TPM is constructed by using lattice QCD data and neutron star observations as reliable constraints. For the EPNJL model, we determine the strength of vector-type four-quark interaction at zero quark chemical potential from lattice QCD data on quark number density normalized by its Stefan-Boltzmann limit. For the hadron phase, we consider three RMF models, NL3, TM1 and model proposed by Maruyama, Tatsumi, Endo and Chiba (MTEC). We find that MTEC is most consistent with the neutron star observations and TM1 is the second best. Assuming that the hadron-quark phase transition occurs in the core of neutron star, we explore the density-dependence of vector-type four-quark interaction. Particularly for the critical baryon chemical potential at zero temperature, we determine a range for the quark phase to occur in the core of neutron star.
364 - G.Y.Shao , M.Di Toro , B.Liu 2011
The two-Equation of State (EoS) model is used to describe the hadron-quark phase transition in asymmetric matter formed at high density in heavy-ion collisions. For the quark phase, the three-flavor Nambu--Jona-Lasinio (NJL) effective theory is used to investigate the influence of dynamical quark mass effects on the phase transition. At variance to the MIT-Bag results, with fixed current quark masses, the main important effect of the chiral dynamics is the appearance of an End-Point for the coexistence zone. We show that a first order hadron-quark phase transition may take place in the region T=(50-80)MeV and rho_B=(2-4)rho_0, which is possible to be probed in the new planned facilities, such as FAIR at GSI-Darmstadt and NICA at JINR-Dubna. From isospin properties of the mixed phase somepossible signals are suggested. The importance of chiral symmetry and dynamical quark mass on the hadron-quark phase transition is stressed. The difficulty of an exact location of Critical-End-Point comes from its appearance in a region of competition between chiral symmetry breaking and confinement, where our knowledge of effective QCD theories is still rather uncertain.
The mixed phase of quarks and hadrons which might exist in the dense matter encountered in the varying conditions of temperature and trapped neutrino fraction in proto-neutron stars is studied. The extent that the mixed phase depends upon the thermodynamical parameters as well as on the stiffness of matter in the hadronic and quark phases is discussed. We show that hadronic equations of state that maximize the quark content of matter at a given {it density} generally minimize the extent of the mixed phase region in a neutron star of a given mass, and that only in extreme cases could a pure quark star result. For both the Nambu Jona-Lasinio and MIT bag quark models, neutrino trapping inhibits the appearance of a mixed phase which leads to possible proto-neutron star metastability. The main difference between the two quark models is the small abundance of strange quarks in the former. We also demonstrate that $partial T/partial n<0$ along adiabats in the quark-hadron mixed phase, opposite to what is found for the kaon condensates-hadron mixed phase. This could lead to core temperatures which are significantly lower in stars containing quarks than in those not containing quarks.
136 - F.X.Wei , G.J.Mao , C.M.Ko 2005
We study the effects of isovector-scalar meson $delta$ on the equation of state (EOS) of neutron star matter in strong magnetic fields. The EOS of neutron-star matter and nucleon effective masses are calculated in the framework of Lagrangian field theory, which is solved within the mean-field approximation. From the numerical results one can find that the $delta$-field leads to a remarkable splitting of proton and neutron effective masses. The strength of $delta$-field decreases with the increasing of the magnetic field and is little at ultrastrong field. The proton effective mass is highly influenced by magnetic fields, while the effect of magnetic fields on the neutron effective mass is negligible. The EOS turns out to be stiffer at $B < 10^{15}$G but becomes softer at stronger magnetic field after including the $delta$-field. The AMM terms can affect the system merely at ultrastrong magnetic field($B > 10^{19}$G). In the range of $10^{15}$ G -- $10^{18}$ G the properties of neutron-star matter are found to be similar with those without magnetic fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا