Do you want to publish a course? Click here

Parity nonconservation in radiative recombination of electrons with heavy hydrogenlike ions

81   0   0.0 ( 0 )
 Added by Anna Maiorova mrs
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The parity nonconservation effect on the radiative recombination of electrons with heavy hydrogenlike ions is studied. Calculations are performed for the recombination into the $2^1S_0$ state of helium-like thorium and gadolinium, where, due to the near-degeneracy of the opposite-parity $2^1S_0$ and $2^3P_0$ states, the effect is strongly enhanced. Two scenarios for possible experiments are studied. In the first scenario, the electron beam is assumed to be fully polarized while the H-like ions are unpolarized and the polarization of the emitted photons is not detected. In the second scenario, the linearly polarized photons are detected in an experiment with unpolarized electrons and ions. Corresponding calculations for the recombination into the $2^3P_0$ state are presented as well.

rate research

Read More

The elastic Rayleigh scattering of twisted light and, in particular, the polarization (transfer) of the scattered photons have been analyzed within the framework of second-order perturbation theory and Diracs relativistic equation. Special attention was paid hereby to the scattering on three different atomic targets: single atoms, a mesoscopic (small) target, and a macroscopic (large) target, which are all centered with regard to the beam axis. Detailed calculations of the polarization Stokes parameters were performed for C^{5+} ions and for twisted Bessel beams. It is shown that the polarization of scattered photons is sensitive to the size of an atomic target and to the helicity, the opening angle, and the projection of the total angular momentum of the incident Bessel beam. These computations indicate more that the Stokes parameters of the (Rayleigh) scattered twisted light may significantly differ from their behaviour for an incident plane-wave radiation.
419 - K. Spruck 2014
We present new experimentally measured and theoretically calculated rate coefficients for the electron-ion recombination of W$^{18+}$([Kr] $4d^{10}$ $4f^{10}$) forming W$^{17+}$. At low electron-ion collision energies, the merged-beam rate coefficient is dominated by strong, mutually overlapping, recombination resonances. In the temperature range where the fractional abundance of W$^{18+}$ is expected to peak in a fusion plasma, the experimentally derived Maxwellian recombination rate coefficient is 5 to 10 times larger than that which is currently recommended for plasma modeling. The complexity of the atomic structure of the open-$4f$-system under study makes the theoretical calculations extremely demanding. Nevertheless, the results of new Breit-Wigner partitioned dielectronic recombination calculations agree reasonably well with the experimental findings. This also gives confidence in the ability of the theory to generate sufficiently accurate atomic data for the plasma modeling of other complex ions.
We present a theoretical investigation of dielectronic recombination (DR) of Ar-like ions that sheds new light on the behavior of the rate coefficient at low-temperatures where these ions form in photoionized plasmas. We provide results for the total and partial Maxwellian-averaged DR rate coefficients from the initial ground level of K II -- Zn XIII ions. It is expected that these new results will advance the accuracy of the ionization balance for Ar-like M-shell ions and pave the way towards a detailed modeling of astrophysically relevant X-ray absorption features. We utilize the AUTOSTRUCTURE computer code to obtain the accurate core-excitation thresholds in target ions and carry out multiconfiguration Breit-Pauli (MCBP) calculations of the DR cross section in the independent-processes, isolated-resonance, distorted-wave (IPIRDW) approximation. Our results mediate the complete absence of direct DR calculations for certain Ar-like ions and question the reliability of the existing empirical rate formulas, often inferred from renormalized data within this isoelectronic sequence.
Dielectronic recombination (DR) of xenonlike W20+ forming W19+ has been studied experimentally at a heavy-ion storage-ring. A merged-beams method has been employed for obtaining absolute rate coefficients for electron-ion recombination in the collision energy range 0-140 eV. The measured rate coefficient is dominated by strong DR resonances even at the lowest experimental energies. At plasma temperatures where the fractional abundance of W20+ is expected to peak in a fusion plasma, the experimentally derived plasma recombination rate coefficient is over a factor of 4 larger than the theoretically-calculated rate coefficient which is currently used in fusion plasma modeling. The largest part of this discrepancy stems most probably from the neglect in the theoretical calculations of DR associated with fine-structure excitations of the W20+([Kr] 4d10 4f8) ion core.
The determination of the electron mass from Penning-trap measurements with $^{12}$C$^{5+}$ ions and from theoretical results for the bound-electron $g$ factor is described in detail. Some recently calculated contributions slightly shift the extracted mass value. Prospects of a further improvement of the electron mass are discussed both from the experimental and from the theoretical point of view. Measurements with $^4$He$^+$ ions will enable a consistency check of the electron mass value, and in future an improvement of the $^4$He nuclear mass and a determination of the fine-structure constant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا