Do you want to publish a course? Click here

On the characterization of parabolicity and hyperbolicity of submanifolds

127   0   0.0 ( 0 )
 Added by Vicente Palmer
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We give a set of sufficient and necessary conditions for parabolicity and hyperbolicity of a submanifold with controlled mean curvature in a Riemannian manifold with a pole and with sectional curvatures bounded from above or from below.



rate research

Read More

We use drifted Brownian motion in warped product model spaces as comparison constructions to show $p$-hyperbolicity of a large class of submanifolds for $pge 2$. The condition for $p$-hyperbolicity is expressed in terms of upper support functions for the radial sectional curvatures of the ambient space and for the radial convexity of the submanifold. In the process of showing $p$-hyperbolicity we also obtain explicit lower bounds on the $p$-capacity of finite annular domains of the submanifolds in terms of the drifted 2-capacity of the corresponding annuli in the respective comparison spaces.
We give a geometric criterion which shows p-parabolicity of a class of submanifolds in a Riemannian manifold, with controlled second fundamental form, for p bigger or equal than 2.
Given a Hermitian line bundle $Lto M$ over a closed, oriented Riemannian manifold $M$, we study the asymptotic behavior, as $epsilonto 0$, of couples $(u_epsilon, abla_epsilon)$ critical for the rescalings begin{align*} &E_epsilon(u, abla)=int_MBig(| abla u|^2+epsilon^2|F_ abla|^2+frac{1}{4epsilon^2}(1-|u|^2)^2Big) end{align*} of the self-dual Yang-Mills-Higgs energy, where $u$ is a section of $L$ and $ abla$ is a Hermitian connection on $L$ with curvature $F_{ abla}$. Under the natural assumption $limsup_{epsilonto 0}E_epsilon(u_epsilon, abla_epsilon)<infty$, we show that the energy measures converge subsequentially to (the weight measure $mu$ of) a stationary integral $(n-2)$-varifold. Also, we show that the $(n-2)$-currents dual to the curvature forms converge subsequentially to $2piGamma$, for an integral $(n-2)$-cycle $Gamma$ with $|Gamma|lemu$. Finally, we provide a variational construction of nontrivial critical points $(u_epsilon, abla_epsilon)$ on arbitrary line bundles, satisfying a uniform energy bound. As a byproduct, we obtain a PDE proof, in codimension two, of Almgrens existence result of (nontrivial) stationary integral $(n-2)$-varifolds in an arbitrary closed Riemannian manifold.
We obtain upper bounds for the isoperimetric quotients of extrinsic balls of submanifolds in ambient spaces which have a lower bound on their radial sectional curvatures. The submanifolds are themselves only assumed to have lower bounds on the radial part of the mean curvature vector field and on the radial part of the intrinsic unit normals at the boundaries of the extrinsic spheres, respectively. In the same vein we also establish lower bounds on the mean exit time for Brownian motion in the extrinsic balls. In those cases, where we may extend our analysis to hold all the way to infinity, we apply a capacity comparison technique to obtain a sufficient condition for the submanifolds to be parabolic, i.e. a condition which will guarantee that any Brownian particle, which is free to move around in the whole submanifold, is bound to eventually revisit any given neighborhood of its starting point with probability 1. The results of this paper are in a rough sense dual to similar results obtained previously by the present authors in complementary settings where we assume that the curvatures are bounded from above.
In this paper, we investigate geometric conditions for isometric immersions with positive index of relative nullity to be cylinders. There is an abundance of noncylindrical $n$-dimensional minimal submanifolds with index of relative nullity $n-2$, fully described by Dajczer and Florit cite{DF2} in terms of a certain class of elliptic surfaces. Opposed to this, we prove that nonminimal $n$-dimensional submanifolds in space forms of any codimension are locally cylinders provided that they carry a totally geodesic distribution of rank $n-2geq2,$ which is contained in the relative nullity distribution, such that the length of the mean curvature vector field is constant along each leaf. The case of dimension $n=3$ turns out to be special. We show that there exist elliptic three-dimensional submanifolds in spheres satisfying the above properties. In fact, we provide a parametrization of three-dimensional submanifolds as unit tangent bundles of minimal surfaces in the Euclidean space whose first curvature ellipse is nowhere a circle and its second one is everywhere a circle. Moreover, we provide several applications to submanifolds whose mean curvature vector field has constant length, a much weaker condition than being parallel.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا