Do you want to publish a course? Click here

Generalized wave operators for a system of nonlinear wave equations in three space dimensions

143   0   0.0 ( 0 )
 Added by Hideo Kubo
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

This paper is concerned with the final value problem for a system of nonlinear wave equations. The main issue is to solve the problem for the case where the nonlinearity is of a long range type. By assuming that the solution is spherically symmetric, we shall show global solvability of the final value problem around a suitable final state, and hence the generalized wave operator and long range scattering operator can be constructed.



rate research

Read More

100 - Sergey A. Denisov 2017
In three-dimensional case, we consider two classical operators: Schrodinger operator and an operator in the divergence form. For slowly-decaying oscillating potentials, we establish spatial asymptotics of the Greens function. The main term in this asymptotics involves vector-valued analytic function whose behavior is studied away from the spectrum. The absolute continuity of the spectrum is established as a corollary. For the operator in the divergence form, we consider the wave equation and establish existence of wave operators.
We derive a novel two-component generalization of the nonlinear variational wave equation as a model for the director field of a nematic liquid crystal with a variable order parameter. The two-component nonlinear variational wave equation admits solutions locally in time. We show that a particular long time asymptotic expansion around a constant state in a moving frame satisfy the two-component Hunter--Saxton system.
We derive a new generalization of the nonlinear variational wave equation. We prove existence of local, smooth solutions for this system. As a limiting case, we recover the nonlinear variational wave equation.
152 - Pascal Noble 2010
This paper is concerned with the stability of periodic wave trains in a generalized Kuramoto-Sivashinski (gKS) equation. This equation is useful to describe the weak instability of low frequency perturbations for thin film flows down an inclined ramp. We provide a set of equations, namely Whithams modulation equations, that determines the behaviour of low frequency perturbations of periodic wave trains. As a byproduct, we relate the spectral stability in the small wavenumber regime to properties of the modulation equations. This stability is always critical since 0 is a 0-Floquet number eigenvalue associated to translational invariance.
97 - Dongyi Wei , Shiwu Yang 2021
By introducing new weighted vector fields as multipliers, we derive quantitative pointwise estimates for solutions of defocusing semilinear wave equation in $mathbb{R}^{1+3}$ with pure power nonlinearity for all $1<pleq 2$. Consequently, the solution vanishes on the future null infinity and decays in time polynomially for all $sqrt{2}<pleq 2$. This improves the uniform boundedness result of the second author when $frac{3}{2}<pleq 2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا