Do you want to publish a course? Click here

Phonons as a probe of the magnetic state in doped and undoped BaFe2As2

180   0   0.0 ( 0 )
 Added by Dmitry Reznik
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measured phonon frequencies and linewidths in doped and undoped BaFe2As2 single crystals by inelastic x-ray scattering and compared our results with density functional theory (DFT) calculations. In agreement with previous work, the calculated frequencies of some phonons depended on whether the ground state was magnetic or not and, in the former case, whether phonon wavevector was parallel or perpendicular to the magnetic ordering wavevector. The experimental results agreed better with the magnetic calculation than with zero Fe moment calculations, except the peak splitting expected due to magnetic domain twinning was not observed. Furthermore, phonon frequencies were unaffected by the breakdown of the magnetic ground state due to either doping or increased temperature. Based on these results we propose that phonons strongly couple not to the static order, but to high frequency magnetic fluctuations.



rate research

Read More

448 - J. H. Kang 2020
Fe-based superconductors exhibit a diverse interplay between charge, orbital, and magnetic ordering1-4. Variations in atomic geometry affect electron hopping between Fe atoms5,6 and the Fermi surface topology, influencing magnetic frustration and the pairing mechanism through changes of orbital overlap and occupancies7-11. Here, we experimentally demonstrate a systematic approach to realize superconductivity without chemical doping in BaFe2As2, employing geometric design within an epitaxial heterostructure. We control both tetragonality and orthorhombicity in BaFe2As2 through superlattice engineering, which we experimentally find to induce superconductivity when the As-Fe-As bond angle approaches that in a regular tetrahedron. This approach of superlattice design could lead to insights into low dimensional superconductivity in Fe-based superconductors.
Study and comparison of over 30 examples of electron doped BaFe2As2 for transition metal (TM) = Co, Ni, Cu, and (Co/Cu mixtures) have lead to an understanding that the suppression of the structural/antiferromagnetic phase transition to low enough temperature in these compounds is a necessary condition for superconductivity, but not a sufficient one. Whereas the structural/antiferromagnetic transitions are suppressed by the number of TM dopant ions (or changes in the c-axis) the superconducting dome exists over a limited range of values of the number of electrons added by doping (or values of the {a/c} ratio). By choosing which combination of dopants are used we can change the relative positions of the upper phase lines and the superconducting dome, even to the extreme limit of suppressing the upper structural and magnetic phase transitions without the stabilization of low temperature superconducting dome.
Inelastic neutron scattering measurements on Ba(Fe0.925Mn0.075)2As2 manifest spin fluctuations at two different wavevectors in the Fe square lattice, (1/2,0) and (1/2,1/2), corresponding to the expected stripe spin-density wave order and checkerboard antiferromagnetic order, respectively. Below T_N=80 K, long-range stripe magnetic ordering occurs and sharp spin wave excitations appear at (1/2,0) while broad and diffusive spin fluctuations remain at (1/2,1/2) at all temperatures. Low concentrations of Mn dopants nucleate local moment spin fluctuations at (1/2,1/2) that compete with itinerant spin fluctuations at (1/2,0) and may disrupt the development of superconductivity.
We carried out a comparative study of the in-plane resistivity and optical spectrum of doped BaFe2As2 and investigated the doping evolution of the charge dynamics. For BaFe2As2, charge dynamics is incoherent at high temperatures. Electron (Co) and isovalent (P) doping into BaFe2As2 increase coherence of the system and transform the incoherent charge dynamics into highly coherent one. On the other hand, charge dynamics remains incoherent for hole (K) doping. It is found in common with any type of doping that superconductivity with high transition temperature emerges when the normal-state charge dynamics maintains incoherence and when the resistivity associated with the coherent channel exhibits dominant temperature-linear dependence.
Combined scanning tunneling microscopy, spectroscopy and local barrier height (LBH) studies show that low-temperature-cleaved optimally-doped Ba(Fe1-xCox)2As2 crystals with x=0.06, with Tc = 22 K, have complicated morphologies. Although the cleavage surface and hence the morphologies are variable, the superconducting gap maps show the same gap widths and nanometer size inhomogeneities irrelevant to the morphology. Based on the spectroscopy and LBH maps, the bright patches and dark stripes in the morphologies are identified as Ba and As dominated surface terminations, respectively. Magnetic impurities, possibly due to cobalt or Fe atoms, are believed to create local in-gap state and in addition suppress the superconducting coherence peaks. This study will clarify the confusion on the cleavage surface terminations of the Fe-based superconductors, and its relation with the electronic structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا