No Arabic abstract
Study and comparison of over 30 examples of electron doped BaFe2As2 for transition metal (TM) = Co, Ni, Cu, and (Co/Cu mixtures) have lead to an understanding that the suppression of the structural/antiferromagnetic phase transition to low enough temperature in these compounds is a necessary condition for superconductivity, but not a sufficient one. Whereas the structural/antiferromagnetic transitions are suppressed by the number of TM dopant ions (or changes in the c-axis) the superconducting dome exists over a limited range of values of the number of electrons added by doping (or values of the {a/c} ratio). By choosing which combination of dopants are used we can change the relative positions of the upper phase lines and the superconducting dome, even to the extreme limit of suppressing the upper structural and magnetic phase transitions without the stabilization of low temperature superconducting dome.
We use neutron resonance spin echo and Larmor diffraction to study the effect of uniaxial pressure on the tetragonal-to-orthorhombic structural ($T_s$) and antiferromagnetic (AF) phase transitions in iron pnictides BaFe$_{2-x}$Ni$_{x}$As$_{2}$ ($x=0,0.03,0.12$), SrFe$_{1.97}$Ni$_{0.03}$As$_2$, and BaFe$_2$(As$_{0.7}$P$_{0.3}$)$_2$. In antiferromagnetically ordered BaFe$_{2-x}$Ni$_{x}$As$_{2}$ and SrFe$_{1.97}$Ni$_{0.03}$As$_2$ with $T_N$ and $T_s$ ($T_Nleq T_s$), a uniaxial pressure necessary to detwin the sample also increases $T_N$, smears out the structural transition, and induces an orthorhombic lattice distortion at all temperatures. By comparing temperature and doping dependence of the pressure induced lattice parameter changes with the elastoresistance and nematic susceptibility obtained from transport and ultrasonic measurements, we conclude that the in-plane resistivity anisotropy found in the paramagnetic state of electron underdoped iron pnictides depends sensitively on the nature of the magnetic phase transition and a strong coupling between the uniaxial pressure induced lattice distortion and electronic nematic susceptibility.
At ambient pressure CaFe2As2 has been found to undergo a first order phase transition from a high temperature, tetragonal phase to a low temperature orthorhombic / antiferromagnetic phase upon cooling through T ~ 170 K. With the application of pressure this phase transition is rapidly suppressed and by ~ 0.35 GPa it is replaced by a first order phase transition to a low temperature collapsed tetragonal, non-magnetic phase. Further application of pressure leads to an increase of the tetragonal to collapsed tetragonal phase transition temperature, with it crossing room temperature by ~ 1.7 GPa. Given the exceptionally large and anisotropic change in unit cell dimensions associated with the collapsed tetragonal phase, the state of the pressure medium (liquid or solid) at the transition temperature has profound effects on the low temperature state of the sample. For He-gas cells the pressure is as close to hydrostatic as possible and the transitions are sharp and the sample appears to be single phase at low temperatures. For liquid media cells at temperatures below media freezing, the CaFe2As2 transforms when it is encased by a frozen media and enters into a low temperature multi-crystallographic-phase state, leading to what appears to be a strain stabilized superconducting state at low temperatures.
The recent discovery of iron ferropnictide superconductors has received intensive concerns on magnetic involved superconductors. Prominent features of ferropnictide superconductors are becoming apparent: the parent compounds exhibit antiferromagnetic (AFM) ordered spin density wave (SDW) state; the magnetic phase transition is always accompanied to a crystal structural transition; superconductivity can be induced by suppressing the SDW phase via either chemical doping or applied external pressure to the parent state. These features generated considerable interests on the interplay between magnetism and structure in chemical doped samples, showing crystal structure transitions always precedes to or coincide with magnetic transition. Pressure tuned transition on the other hand would be more straightforward to superconducting mechanism studies since there are no disorder effects caused by chemical doping; however, remarkably little is known about the interplay in the parent compounds under controlled pressure due to the experimental challenge of in situ measuring both of magnetic & crystal structure evolution at high pressure & low temperatures. Here we show from combined synchrotron Mossbauer and x-ray diffraction at high pressures that the magnetic ordering surprisingly precedes the structural transition at high pressures in the parent compound BaFe2As2, in sharp contrast to the chemical doping case. The results can be well understood in terms of the spin fluctuations in the emerging nematic phase before the long range magnetic order that sheds new light on understanding how parent compound evolves from a SDW state to a superconducting phase, a key scientific inquiry of iron based superconductors.
We have investigated structural and magnetic phase transitions under high pressures in a quaternary rare earth transition metal arsenide oxide NdCoAsO compound that is isostructural to high temperature superconductor NdFeAsO. Four-probe electrical resistance measurements carried out in a designer diamond anvil cell show that the ferromagnetic Curie temperature and anti-ferromagnetic Neel temperature increase with an increase in pressure. High pressure x-ray diffraction studies using a synchrotron source show a structural phase transition from a tetragonal phase to a new crystallographic phase at a pressure of 23 GPa at 300 K. The NdCoAsO sample remained anti-ferromagnetic and non-superconducting to temperatures down to 10 K and to the highest pressure achieved in this experiment of 53 GPa. A P-T phase diagram for NdCoAsO is presented to a pressure of 53 GPa and low temperatures of 10 K.
Superconducting and normal state transport properties in iron pnictides are sensitive to disorder and impurity scattering. By investigation of Ba(Fe1-xCox)2As2 thin films with varying Co concentration, we demonstrate that in the dirty limit the superconducting dome in the electronic phase diagram of Ba(Fe1-xCox)2As2 shifts towards lower doping concentrations, which differs significantly from observations in single crystals. We show that especially in the underdoped regime superconducting transition temperatures higher than 27 K are possible.