No Arabic abstract
We investigated effects of magnetic field H on antiferromagnetic (AF) structures in CeRh_{1-x}Co_xIn_5 by performing the elastic neutron scattering measurements. By applying H along the [1,-1,0] direction, the incommensurate AF state with the propagation vector of q_{h1}=(1/2,1/2,0.297) observed at H=0 is replaced by the commensurate AF state with the q_{c2} = (1/2, 1/2, 1/4) modulation above 2 T for x=0.23, while the AF states with the q_{c1}=(1/2,1/2,1/2) and q_{h2}=(1/2,1/2,0.42) modulations seen at H=0 change into a single q_{c1}-AF state above ~1.6 T for x=0.7. These results suggest the different types of AF correlation for Co concentrations of 0.23 and 0.7 in an applied magnetic field H.
The elastic neutron scattering experiments were carried out on the solid solutions CeRh_{1-x}Co_xIn_5 to clarify the nature of the antiferromagnetic (AF) state in the vicinity of the quantum critical point (QCP): x_c ~0.8. The incommensurate AF order with the wave vector of q_h=(1/2,1/2,~0.3) observed in pure CeRhIn_5 is weakly suppressed upon doping with Co, and a commensurate q_c=(1/2,1/2,1/2) and an incommensurate q_1=(1/2,1/2,~0.42) AF structures evolve at intermediate Co concentrations. These AF orders are enhanced at x=0.7, and furthermore the q_h AF order vanishes. These results suggest that the AF correlations with the q_c and q_1 modulations are significantly enhanced in the intermediate x range, and may be connected with the evolution of the superconductivity observed above x~0.3.
In zero magnetic field, the famous neutron spin resonance in the f-electron superconductor CeCoIn5 is similar to the recently discovered exciton peak in the non-superconducting CeB6. Magnetic field splits the resonance in CeCoIn5 into two components, indicating that it is a doublet. Here we employ inelastic neutron scattering (INS) to scrutinize the field dependence of spin fluctuations in CeB6. The exciton shows a markedly different behavior without any field splitting. Instead, we observe a second field-induced magnon whose energy increases with field. At the ferromagnetic zone center, however, we find only a single mode with a non-monotonic field dependence. At low fields, it is initially suppressed to zero together with the antiferromagnetic order parameter, but then reappears at higher fields inside the hidden-order phase, following the energy of an electron spin resonance (ESR). This is a unique example of a ferromagnetic resonance in a heavy-fermion metal seen by both ESR and INS consistently over a broad range of magnetic fields.
We report a thermodynamic and transport study of the phase diagram of CeRh1-xIrxIn5. Superconductivity is observed over a broad range of doping, 0.3 < x < 1, including a substantial range of concentration (0.3 < x <0.6) over which it coexists with magnetic order (which is observed for 0 < x < 0.6). The anomalous transition to zero resistance that is observed in CeIrIn5 is robust against Rh substitution. In fact, the observed bulk Tc in CeRh0.5Ir0.5In5 is more than double that of CeIrIn5, whereas the zero-resistance transition temperature is relatively unchanged for 0.5 < x < 1.
A perturbation spin-wave theory for the quantum Heisenberg antiferromagnets on a square lattice is proposed to calculate the uniform static magnetic susceptibility at finite temperatures, where a divergence in the previous theories due to an artificial phase transition has been removed. To the zeroth order, the main features of the uniform static susceptibility are produced: a linear temperature dependence at low temperatures and a smooth crossover in the intermediate range and the Curie law at high temperatures. When the leading corrections from the spin-wave interactions are included, the resulting spin susceptibility in the full temperature range is in agreement with the numerical quantum Monte Carlo simulations and high-temperature series expansions.
We report $^{115}$In nuclear magnetic resonance (NMR) measurements in CeCoIn$_5$ at low temperature ($T approx 70$ mK) as a function of magnetic field ($H_0$) from 2 T to 13.5 T applied perpendicular to the $hat c$-axis. NMR line shift reveals that below 10 T the spin susceptibility increases as $sqrt{H_0}$. We associate this with an increase of the density of states due to the Zeeman and Doppler-shifted quasiparticles extended outside the vortex cores in a d-wave superconductor. Above 10 T a new superconducting state is stabilized, possibly the modulated phase predicted by Fulde, Ferrell, Larkin and Ovchinnikov (FFLO). This phase is clearly identified by a strong and linear increase of the NMR shift with the field, before a jump at the first order transition to the normal state.