Do you want to publish a course? Click here

Parameter estimation for Boolean models of biological networks

174   0   0.0 ( 0 )
 Publication date 2009
  fields Biology
and research's language is English




Ask ChatGPT about the research

Boolean networks have long been used as models of molecular networks and play an increasingly important role in systems biology. This paper describes a software package, Polynome, offered as a web service, that helps users construct Boolean network models based on experimental data and biological input. The key feature is a discrete analog of parameter estimation for continuous models. With only experimental data as input, the software can be used as a tool for reverse-engineering of Boolean network models from experimental time course data.



rate research

Read More

Many biological networks have been labelled scale-free as their degree distribution can be approximately described by a powerlaw distribution. While the degree distribution does not summarize all aspects of a network it has often been suggested that its functional form contains important clues as to underlying evolutionary processes that have shaped the network. Generally determining the appropriate functional form for the degree distribution has been fitted in an ad-hoc fashion. Here we apply formal statistical model selection methods to determine which functional form best describes degree distributions of protein interaction and metabolic networks. We interpret the degree distribution as belonging to a class of probability models and determine which of these models provides the best description for the empirical data using maximum likelihood inference, composite likelihood methods, the Akaike information criterion and goodness-of-fit tests. The whole data is used in order to determine the parameter that best explains the data under a given model (e.g. scale-free or random graph). As we will show, present protein interaction and metabolic network data from different organisms suggests that simple scale-free models do not provide an adequate description of real network data.
156 - E. Almaas , A.-L. Barabasi 2004
The rapidly developing theory of complex networks indicates that real networks are not random, but have a highly robust large-scale architecture, governed by strict organizational principles. Here, we focus on the properties of biological networks, discussing their scale-free and hierarchical features. We illustrate the major network characteristics using examples from the metabolic network of the bacterium Escherichia coli. We also discuss the principles of network utilization, acknowledging that the interactions in a real network have unequal strengths. We study the interplay between topology and reaction fluxes provided by flux-balance analysis. We find that the cellular utilization of the metabolic network is both globally and locally highly inhomogeneous, dominated by hot-spots, representing connected high-flux pathways.
Metabolic heterogeneity is widely recognised as the next challenge in our understanding of non-genetic variation. A growing body of evidence suggests that metabolic heterogeneity may result from the inherent stochasticity of intracellular events. However, metabolism has been traditionally viewed as a purely deterministic process, on the basis that highly abundant metabolites tend to filter out stochastic phenomena. Here we bridge this gap with a general method for prediction of metabolite distributions across single cells. By exploiting the separation of time scales between enzyme expression and enzyme kinetics, our method produces estimates for metabolite distributions without the lengthy stochastic simulations that would be typically required for large metabolic models. The metabolite distributions take the form of Gaussian mixture models that are directly computable from single-cell expression data and standard deterministic models for metabolic pathways. The proposed mixture models provide a systematic method to predict the impact of biochemical parameters on metabolite distributions. Our method lays the groundwork for identifying the molecular processes that shape metabolic heterogeneity and its functional implications in disease.
Complex systems are often modeled as Boolean networks in attempts to capture their logical structure and reveal its dynamical consequences. Approximating the dynamics of continuous variables by discrete values and Boolean logic gates may, however, introduce dynamical possibilities that are not accessible to the original system. We show that large random networks of variables coupled through continuous transfer functions often fail to exhibit the complex dynamics of corresponding Boolean models in the disordered (chaotic) regime, even when each individual function appears to be a good candidate for Boolean idealization. A suitably modified Boolean theory explains the behavior of systems in which information does not propagate faithfully down certain chains of nodes. Model networks incorporating calculated or directly measured transfer functions reported in the literature on transcriptional regulation of genes are described by the modified theory.
150 - Stefano Schivo 2014
ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions between biological entities in form of a graph, while the parameters determine the speed of occurrence of such interactions. When a mismatch is observed between the behavior of an ANIMO model and experimental data, we want to update the model so that it explains the new data. In general, the topology of a model can be expanded with new (known or hypothetical) nodes, and enables it to match experimental data. However, the unrestrained addition of new parts to a model causes two problems: models can become too complex too fast, to the point of being intractable, and too many parts marked as hypothetical or not known make a model unrealistic. Even if changing the topology is normally the easier task, these problems push us to try a better parameter fit as a first step, and resort to modifying the model topology only as a last resource. In this paper we show the support added in ANIMO to ease the task of expanding the knowledge on biological networks, concentrating in particular on the parameter settings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا