Do you want to publish a course? Click here

Validity of effective material parameters for optical fishnet metamaterials

117   0   0.0 ( 0 )
 Added by Christoph Menzel
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although optical metamaterials that show artificial magnetism are mesoscopic systems, they are frequently described in terms of effective material parameters. But due to intrinsic nonlocal (or spatially dispersive) effects it may be anticipated that this approach is usually only a crude approximation and is physically meaningless. In order to study the limitations regarding the assignment of effective material parameters, we present a technique to retrieve the frequency-dependent elements of the effective permittivity and permeability tensors for arbitrary angles of incidence and apply the method exemplarily to the fishnet metamaterial. It turns out that for the fishnet metamaterial, genuine effective material parameters can only be introduced if quite stringent constraints are imposed on the wavelength/unit cell size ratio. Unfortunately they are only met far away from the resonances that induce a magnetic response required for many envisioned applications of such a fishnet metamaterial. Our work clearly indicates that the mesoscopic nature and the related spatial dispersion of contemporary optical metamaterials that show artificial magnetism prohibits the meaningful introduction of conventional effective material parameters.



rate research

Read More

The parameter retrieval is a procedure in which effective material properties are assigned to a given metamaterial. A widely used technique bases on the inversion of reflection and transmission from a metamaterial slab. Thus far, local constitutive relations have been frequently considered in this retrieval procedure to describe the metamaterial at the effective level. This, however, is insufficient. The retrieved local material properties frequently fail to predict reliably the optical response from the slab in situations that deviate from those that have been considered in the retrieval, e.g. when illuminating the slab at a different incidence angle. To significantly improve the situation, we describe here a parameter retrieval, also based on the inversion of reflection and transmission from a slab, that describes the metamaterial at the effective level with nonlocal constitutive relations. We retrieve the effective material parameters at the example of a fishnet metamaterial. We demonstrate that the nonlocal constitutive relation can describe the optical response much better than local constitutive relation would do. Our approach is widely applicable to a large class of metamaterials.
In this letter, we introduce stacked fishnet metamaterial for steering light in microwave region. We numerically demonstrate that optical Bloch oscillations and a focus of as small as one sixth of a wavelength can be achieved. The flexibility of varying geometrical parameters of the fishnet slabs provides an efficient way for tuning its local effective media parameters and opens the possibility for controlling light arbitrarily. The experiment verifies subwavelength-sized light focusing effect by scanning magnetic field at the surface of the sample directly.
We introduce a chiral metamaterial with strong, non-resonant optical activity, and very low polarization ellipticity. We achieve this by combining a meta-atom and its complementary structure into a meta-molecule, resulting in the coupling of magnetic and electric dipole responses. In contrast to either a pair of crosses, or complementary crosses, this structure has low dispersion in the optical activity at the transmission resonance. We also study the excitation mechanism in this structure, and optimize the optical activity through changing the twist angle.
We investigate the influence of different metals on the electromagnetic response of fishnet metamaterials in the optical regime.We found, instead of using a Drude model, metals with a dielectric function from experimentally measured data should be applied to correctly predict the behavior of optical metamaterials. Through comparison of the performance for fishnet metamaterials made with different metals (i.e., gold, copper, and silver), we found silver is the best choice for the metallic parts compared to other metals, because silver allows for the strongest negative-permeability resonance and, hence, for optical fishnet metamaterials with a high figure-of-merit. Our study offers a valuable reference in the designs for optical metamaterials with optimized properties.
We study theoretically and experimentally a novel type of metamaterial with hybrid elements composed of twisted pairs of cross-shaped meta-atoms and their complements. We reveal that such two-layer metasurfaces demonstrate large, dispersionless optical activity at the transmission resonance accompanied by very low ellipticity. We develop a retrieval procedure to determine the effective material parameters for this structure, which has lower-order symmetry ($mathrm {C}_4$) than other commonly studied chiral structures. We verify our new theoretical approach by reproducing numerical and experimental scattering parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا