No Arabic abstract
The ESO Supernova Ia Progenitor Survey (SPY) took high-resolution spectra of more than 1000 white dwarfs and pre-white dwarfs. About two thirds of the stars observed are hydrogen-dominated DA white dwarfs. Here we present a catalog and detailed spectroscopic analysis of the DA stars in the SPY. Atmospheric parameters effective temperature and surface gravity are determined for normal DAs. Double-degenerate binaries, DAs with magnetic fields or dM companions, are classified and discussed. The spectra are compared with theoretical model atmospheres using a chi^2 fitting technique. Our final sample contains 615 DAs, which show only hydrogen features in their spectra, although some are double-degenerate binaries. 187 are new detections or classifications. We also find 10 magnetic DAs (4 new) and 46 DA+dM pairs (10 new).
We present a spectroscopically identified catalogue of 72 DA white dwarfs from the LAMOST pilot survey. 35 are found to be new identifications after cross-correlation with the Eisenstein et al. and Villanova catalogues. The effective temperature and gravity of these white dwarfs are estimated by Balmer lines fitting. Most of them are hot white dwarfs. The cooling times and masses of these white dwarfs are estimated by interpolation in theoretical evolution tracks. The peak of mass distribution is found to be $sim$ 0.6 $M_odot$ which is consistent with prior work in the literature. The distances of these white dwarfs are estimated using the method of Synthetic Spectral Distances. All of these WDs are found to be in the Galactic disk from our analysis of space motions. Our sample supports the expectation white dwarfs with high mass are concentrated near the plane of Galactic disk
We present 16 new, and confirm 7 previously identified, DA white dwarfs in the Kepler field through ground-based spectroscopy with the Hale 200, Kitt Peak 4-meter, and Bok 2.3-meter telescopes. Using atmospheric models we determine their effective temperatures and surface gravities to constrain their position with respect to the ZZ Ceti (DA pulsator) instability strip, and look for the presence or absence of pulsation with Keplers unprecedented photometry. Our results are as follows: i) From our measurements of temperature and surface gravity, 12 of the 23 DA white dwarfs from this work fall well outside of the instability strip. The Kepler photometry available for 11 of these WDs allows us to confirm that none are pulsating. One of these eleven happens to be a presumed binary, KIC 11604781, with a period of ~5 days. ii) The remaining 11 DA white dwarfs are instability strip candidates, potentially falling within the current, empirical instability strip, after accounting for uncertainties. These WDs will help constrain the strips location further, as eight are near the blue edge and three are near the red edge of the instability strip. Four of these WDs do not have Kepler photometry, so ground-based photometry is needed to determine the pulsation nature of these white dwarfs. The remaining seven have Kepler photometry available, but do not show any periodicity on typical WD pulsation timescales.
We have analysed a sample of 23 hot DAs to better understand the source of the circumstellar features reported in previous work. Unambiguous detections of circumstellar material are again made at eight stars. The velocities of the circumstellar material at three of the white dwarfs are coincident with the radial velocities of ISM along the sight line to the stars, suggesting that the objects may be ionising the ISM in their locality. In three further cases, the circumstellar velocities are close to the ISM velocities, indicating that these objects are either ionising the ISM, or evaporated planetesimals/material in a circumstellar disc. The circumstellar velocity at WD 1614-084 lies far from the ISM velocities, indicating either the ionisation of an undetected ISM component or circumstellar material. The material seen at WD 0232+035 can be attributed to the photoionisation of material lost from its M dwarf companion. The measured column densities of the circumstellar material lie within the ionised ISM column density ranges predicted to exist in hot DA Stromgren spheres.
The importance to stellar evolution of understanding the metal abundances in hot white dwarfs is well known. Previous work has found the hot DA white dwarfs REJ 1032+532, REJ 1614-085 and GD 659 to have highly abundant, stratified photospheric nitrogen, due to the narrow absorption line profiles of the FUV N V doublet and the lack of EUV continuum absorption. A preliminary analysis of the extremely narrow, deep line profiles of the photospheric metal absorption features of PG 0948+534 suggested a similar photospheric metal configuration. However, other studies have found REJ 1032+532, REJ 1614-085 and GD 659 can be well described by homogeneous models, with nitrogen abundances more in keeping with those of white dwarfs with higher effective temperatures. Here, a re-analysis of the nitrogen absorption features seen in REJ 1032+532, REJ 1614-085 and GD 659 is presented, with the aim of better understanding the structure of these stars, to test which models better represent the observed data and apply the results to the line profiles seen in PG 0948+534. A degeneracy is seen in the modelling of the nitrogen absorption line profiles of REJ 1032+532, REJ 1614-085 and GD 659, with low abundance, homogeneously distributed nitrogen models most likely being a better representation of the observed data. In PG 0948+534, no such degeneracy is seen, and the enigmatically deep line profiles could not be modelled satisfactorially.
The unprecedented extent of coverage provided by Kepler observations recently revealed outbursts in two hydrogen-atmosphere pulsating white dwarfs (DAVs) that cause hours-long increases in the overall mean flux of up to 14%. We have identified two new outbursting pulsating white dwarfs in K2, bringing the total number of known outbursting white dwarfs to four. EPIC 211629697, with T_eff = 10,780 +/- 140 K and log(g) = 7.94 +/- 0.08, shows outbursts recurring on average every 5.0 d, increasing the overall flux by up to 15%. EPIC 229227292, with T_eff = 11,190 +/- 170 K and log(g) = 8.02 +/- 0.05, has outbursts that recur roughly every 2.4 d with amplitudes up to 9%. We establish that only the coolest pulsating white dwarfs within a small temperature range near the cool, red edge of the DAV instability strip exhibit these outbursts.