Do you want to publish a course? Click here

Scattering Mechanism in Modulation-Doped Shallow Two-Dimensional Electron Gases

248   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a systematic investigation of the dominant scattering mechanism in shallow two-dimensional electron gases (2DEGs) formed in modulation-doped GaAs/Al_{x}Ga_{1-x}As heterostructures. The power-law exponent of the electron mobility versus density, mu propto n^{alpha}, is extracted as a function of the 2DEGs depth. When shallower than 130 nm from the surface, the power-law exponent of the 2DEG, as well as the mobility, drops from alpha simeq 1.65 (130 nm deep) to alpha simeq 1.3 (60 nm deep). Our results for shallow 2DEGs are consistent with theoretical expectations for scattering by remote dopants, in contrast to the mobility-limiting background charged impurities of deeper heterostructures.



rate research

Read More

A two-dimensional electron gas (2DEG) in SrTiO3 is created via modulation doping by interfacing undoped SrTiO3 with a wider-band-gap material, SrTi1-xZrxO3, that is doped n-type with La. All layers are grown using hybrid molecular beam epitaxy. Using magnetoresistance measurements, we show that electrons are transferred into the SrTiO3, and a 2DEG is formed. In particular, Shubnikov-de Haas oscillations are shown to depend only on the perpendicular magnetic field. Experimental Shubnikov-de Haas oscillations are compared with calculations that assume multiple occupied subbands.
We demonstrate tunable transverse rectification in a density-modulated two-dimensional electron gas (2DEG). The density modulation is induced by two surface gates, running in parallel along a narrow stripe of 2DEG. A transverse voltage in the direction of the density modulation is observed, i.e. perpendicular to the applied source-drain voltage. The polarity of the transverse voltage is independent of the polarity of the source-drain voltage, demonstrating rectification in the device. We find that the transverse voltage $U_{y}$ depends quadratically on the applied source-drain voltage and non-monotonically on the density modulation. The experimental results are discussed in the framework of a diffusion thermopower model.
We have fabricated high-mobility, two-dimensional electron gases in a GaAs quantum well on cylindrical surfaces, which allows to investigate the magnetotransport behavior under varying magnetic fields along the current path. A strong asymmetry in the quantum Hall effect appears for measurements on both sides of the conductive path. We determined the strain at the position of the quantum well. We observe ballistic transport in 8-micrometers-wide collimating structures.
We present measurements of the energy relaxation length scale $ell$ in two-dimensional electron gases (2DEGs). A temperature gradient is established in the 2DEG by means of a heating current, and then the elevated electron temperature $T_e$ is estimated by measuring the resultant thermovoltage signal across a pair of deferentially biased bar-gates. We adapt a model by Rojek and K{o}nig [Phys. Rev. B textbf{90}, 115403 (2014)] to analyse the thermovoltage signal and as a result extract $ell$, $T_e$, and the power-law exponent $alpha_i$ for inelastic scattering events in the 2DEG. We show that in high-mobility 2DEGs, $ell$ can attain macroscopic values of several hundred microns, but decreases rapidly as the carrier density $n$ is decreased. Our work demonstrates a versatile low-temperature thermometry scheme, and the results provide important insights into heat transport mechanisms in low-dimensional systems and nanostructures. These insights will be vital for practical design considerations of future nanoelectronic circuits.
We present thermopower $S$ and resistance $R$ measurements on GaAs-based mesoscopic two-dimensional electron gases (2DEGs) as functions of the electron density $n_s$. At high $n_s$ we observe good agreement between the measured $S$ and $S_{rm{MOTT}}$, the Mott prediction for a non-interacting metal. As $n_s$ is lowered, we observe a crossover from Mott-like behaviour to that where $S$ shows strong oscillations and even sign changes. Remarkably, there are absolutely no features in $R$ corresponding to those in $S$. In fact, $R$ is devoid of even any universal conductance fluctuations. A statistical analysis of the thermopower oscillations from two devices of dissimilar dimensions suggest a universal nature of the oscillations. We critically examine whether they can be mesoscopic fluctuations of the kind described by Lesovik and Khmelnitskii in Sov. Phys. JETP. textbf{67}, 957 (1988).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا