Do you want to publish a course? Click here

Universal $sqrt{2}timessqrt{2}$ structure and short-range charge order at the surfaces of BaFe$_{2-x}$Co$_{x}$As$_{2}$ compounds with various Co doping levels

70   0   0.0 ( 0 )
 Added by Changgan Zeng
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The structure and electronic order at the cleaved (001) surfaces of the newly-discovered pnictide superconductors BaFe$_{2-x}$Co$_{x}$As$_{2}$ with x ranging from 0 to 0.32 are systematically investigated by scanning tunneling microscopy. A $sqrt{2}timessqrt{2}$ surface structure is revealed for all the compounds, and is identified to be Ba layer with half Ba atoms lifted-off by combination with theoretical simulation. A universal short-range charge order is observed at this $sqrt{2}timessqrt{2}$ surface associated with an energy gap of about 30 meV for all the compounds.

rate research

Read More

Application of pressures or electron-doping through Co substitution into Fe sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a superconductor with the Tc exceeding 20K. We carried out systematic transport measurements of BaFe(2-x)Co(x)As(2) superconductors in pressures up to 2.5GPa, and elucidate the interplay between the effects of electron-doping and pressures. For the underdoped sample with nominal composition x = 0.08, application of pressure strongly suppresses a magnetic instability while enhancing Tc by nearly a factor of two from 11K to 21K. In contrast, the optimally doped x=0.20 sample shows very little enhancement of Tc=22K under applied pressure. Our results strongly suggest that the proximity to a magnetic instability is the key to the mechanism of superconductivity in iron-pnictides.
The isovalent-substituted iron-pnictide superconductor SrFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ ($x$=0.35) has a slightly higher optimum critical temperature than the similar system BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$, and its parent compound SrFe$_{2}$As$_{2}$ has a much higher Neel temperature than BaFe$_{2}$As$_{2}$. We have studied the band structure and the Fermi surfaces of optimally-doped SrFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ by angle-resolved photoemission spectroscopy (ARPES). Three holelike Fermi surfaces (FSs) around (0,0) and two electronlike FSs around ($pi$,$pi$) have been observed as in the case of BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$. Measurements with different photon energies have revealed that one of the hole FSs is more strongly warped along the $k_{z}$ direction than the corresponding one in BaFe(As$_{1-x}$P$_{x}$)$_{2}$, while the electron FSs are almost cylindrical unlike corrugated ones in BaFe(As$_{1-x}$P$_{x}$)$_{2}$. Comparison of the ARPES data with first-principles band-structure calculation revealed that the quasiparticle mass renormalization factors are different not only between bands of different orbital character but also between the hole and electron FSs of the same orbital character. By examining nesting conditions between the hole and electron FSs, we conclude that magnetic interactions between FeAs layers rather than FS nesting play an important role in stabilizing the antiferromagnetic order. The insensitivity of superconductivity to the FS nesting can be explained if only the $d_{xy}$ and/or $d_{xz/yz}$ orbitals are active in inducing superconductivity or if FS nesting is not important for superconductivity.
492 - T. Hajiri , T. Ito , M. Matsunami 2014
We observed the anisotropic superconducting-gap (SC-gap) structure of a slightly overdoped superconductor, Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ ($x=0.1$), using three-dimensional (3D) angle-resolved photoemission spectroscopy. Two hole Fermi surfaces (FSs) observed at the Brillouin zone center and an inner electron FS at the zone corner showed a nearly isotropic SC gap in 3D momentum space. However, the outer electron FS showed an anisotropic SC gap with nodes or gap minima around the M and A points. The different anisotropies obtained the SC gap between the outer and inner electron FSs cannot be expected from all theoretical predictions with spin fluctuation, orbital fluctuation, and both competition. Our results provide a new insight into the SC mechanisms of iron pnictide superconductors.
We report an infrared optical study of the pnictide high-temperature superconductor BaFe$_{1.84}$Co$_{0.16}$As$_{2}$ and its parent compound BaFe$_{2}$As$_{2}$. We demonstrate that electronic correlations are moderately strong and do not change across the spin-density wave transition or with doping. By examining the energy scale and direction of spectral weight transfer, we argue that Hunds coupling emph{J} is the primary mechanism that gives rise to correlations.
To identify the key parameter for optimal superconductivity in iron pnictides, we measured the $^{31}$P-NMR relaxation rate on BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ ($x = 0.22$ and 0.28) under pressure and compared the effects of chemical substitution and physical pressure. For $x = 0.22$, structural and antiferromagnetic (AFM) transition temperatures both show minimal changes with pressure up to 2.4~GPa, whereas the superconducting transition temperature $T_{rm c}$ increases to twice its former value. In contrast, for $x=0.28$ near the AFM quantum critical point (QCP), the structural phase transition is quickly suppressed by pressure and $T_{rm c}$ reaches a maximum. The analysis of the temperature-dependent nuclear relaxation rate indicates that these contrasting behaviors can be quantitatively explained by a single curve of the $T_{rm c}$ dome as a function of Weiss temperature $theta$, which measures the distance to the QCP. Moreover, the $T_{rm c}$-$theta$ curve under pressure precisely coincides with that with chemical substitution, which is indicative of the existence of a universal relationship between low-energy AFM fluctuations and superconductivity on BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا