Do you want to publish a course? Click here

Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing

127   0   0.0 ( 0 )
 Added by Jorge Bravo-Abad
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Achieving efficient terahertz (THz) generation using compact turn-key sources operating at room temperature and modest power levels represents one of the critical challeges that must be overcome to realize truly practical applications based on THz. Up to now, the most efficient approaches to THz generation at room temperature -- relying mainly on optical rectification schemes -- require intricate phase-matching set-ups and powerful lasers. Here we show how the unique light-confining properties of triply-resonant photonic resonators can be tailored to enable dramatic enhancements of the conversion efficiency of THz generation via nonlinear frequency down-conversion processes. We predict that this approach can be used to reduce up to three orders of magnitude the pump powers required to reach quantum-limited conversion efficiency of THz generation in nonlinear optical material systems. Furthermore, we propose a realistic design readily accesible experimentally, both for fabrication and demonstration of optimal THz conversion efficiency at sub-W power levels.



rate research

Read More

We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by coupling a THz cavity to a doubly-resonant, dual-polarization near-infrared (e.g. telecom band) photonic-crystal nanobeam cavity, allowing the mixing of three mutually orthogonal fundamental cavity modes through a chi(2) nonlinearity. We demonstrate through coupled-mode theory that complete depletion of the pump frequency - i.e., quantum-limited conversion - is possible in an experimentally feasible geometry, with the operating output power at the point of optimal total conversion efficiency adjustable by varying the mode quality (Q) factors.
We present a comprehensive study of second-order nonlinear difference frequency generation in triply resonant cavities using a theoretical framework based on coupled-mode theory. We show that optimal quantum-limited conversion efficiency can be achieved at any pump power when the powers at the pump and idler frequencies satisfy a critical relationship. We demonstrate the existence of a broad parameter range in which all triply-resonant DFG processes exhibit monostable conversion. We also demonstrate the existence of a geometry-dependent bistable region.
Second-order nonlinear optical processes are used to convert light from one wavelength to another and to generate quantum entanglement. Creating chip-scale devices to more efficiently realize and control these interactions greatly increases the reach of photonics. Optical crystals and guided wave devices made from lithium niobate and potassium titanyl phosphate are typically used to realize second-order processes but face significant drawbacks in scalability, power, and tailorability when compared to emerging integrated photonic systems. Silicon or silicon nitride integrated photonic circuits enhance and control the third-order optical nonlinearity by confining light in dispersion-engineered waveguides and resonators. An analogous platform for second-order nonlinear optics remains an outstanding challenge in photonics. It would enable stronger interactions at lower power and reduce the number of competing nonlinear processes that emerge. Here we demonstrate efficient frequency doubling and parametric oscillation in a thin-film lithium niobate photonic circuit. Our device combines recent progress on periodically poled thin-film lithium niobate waveguidesand low-loss microresonators. Here we realize efficient >10% second-harmonic generation and parametric oscillation with microwatts of optical power using a periodically-poled thin-film lithium niobate microresonator. The operating regimes of this system are controlled using the relative detuning of the intracavity resonances. During nondegenerate oscillation, the emission wavelength is tuned over terahertz by varying the pump frequency by 100s of megahertz. We observe highly-enhanced effective third-order nonlinearities caused by cascaded second-order processes resulting in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms.
A broadband visible blue-to-red, 10 GHz repetition rate frequency comb is generated by combined spectral broadening and triple-sum frequency generation in an on-chip silicon nitride waveguide. Ultra-short pulses of 150 pJ pulse energy, generated via electro-optic modulation of a 1560 nm continuous-wave laser, are coupled to a silicon nitride waveguide giving rise to a broadband near-infrared supercontinuum. Modal phase matching inside the waveguide allows direct triple-sum frequency transfer of the near-infrared supercontinuum into the visible wavelength range covering more than 250 THz from below 400 nm to above 600 nm wavelength. This scheme directly links the mature optical telecommunication band technology to the visible wavelength band and can find application in astronomical spectrograph calibration as well as referencing of continuous-wave lasers.
Thin-film lithium niobate (TFLN) is superior for integrated nanophotonics due to its outstanding properties in nearly all aspects: strong second-order nonlinearity, fast and efficient electro-optic effects, wide transparency window, and little two photon absorption and free carrier scattering. Together, they permit highly integrated nanophotonic circuits capable of complex photonic processing by incorporating disparate elements on the same chip. Yet, there has to be a demonstration that synergizes those superior properties for system advantage. Here we demonstrate such a chip that capitalizes on TFLNs favorable ferroelectricity, high second-order nonlinearity, and strong electro-optic effects. It consists of a monolithic circuit integrating a Z-cut, quasi-phase matched microring with high quality factor and a phase modulator used in active feedback control. By Pound-Drever-Hall locking, it realizes stable frequency doubling at about 50% conversion with only milliwatt pump, marking the highest by far among all nanophotonic platforms with milliwatt pumping. Our demonstration addresses a long-outstanding challenge facing cavity-based optical processing, including frequency conversion, frequency comb generation, and all-optical switching, whose stable performance is hindered by photorefractive or thermal effects. Our results further establish TFLN as an excellent material capable of optical multitasking, as desirable to build multi-functional chip devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا