No Arabic abstract
Motivated by recent interest in low dimensional arrays of atoms, we experimentally investigated the way cold collisional processes are affected by the geometry of the considered atomic sample. More specifically, we studied the case of photoassociative ionization (PAI) both in a storage ring where collision is more unidirectional in character and in a trap with clear undefinition of collision axis. First, creating a ring shaped trap (atomotron) we investigated two-color PAI dependence with intensity and polarization of a probing laser. The intensity dependence of the PAI rate was also measured in a magneto-optical trap presenting equivalent temperature and density conditions. Indeed, the results show that in the ring trap, the value of the PAI rate constant is much lower and does not show evidences of saturation, unlike in the case of the 3D-MOT. Cold atomic collisions in storage ring may represent new possibilities for study.
We have measured electron impact ionization (EII) for Fe 7+ from the ionization threshold up to 1200 eV. The measurements were performed using the TSR heavy ion storage ring. The ions were stored long enough prior to measurement to remove most metastables, resulting in a beam of 94% ground state ions. Comparing with the previously recommended atomic data, we find that the Arnaud & Raymond (1992) cross section is up to about 40% larger than our measurement, with the largest discrepancies below about 400~eV. The cross section of Dere (2007) agrees to within 10%, which is about the magnitude of the experimental uncertainties. The remaining discrepancies between measurement and the most recent theory are likely due to shortcomings in the theoretical treatment of the excitation-autoionization contribution.
We propose and experimentally investigate a scheme for observing Feshbach resonances in atomic quantum gases in situ and with a high temporal resolution of several ten nanoseconds. The method is based on the detection of molecular ions, which are optically generated from atom pairs at small interatomic distances. As test system we use a standard rubidium gas (87Rb) with well known magnetically tunable Feshbach resonances. The fast speed and the high sensitivity of our detection scheme allows to observe a complete Feshbach resonance within one millisecond and without destroying the gas.
An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 $pm$ 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion) and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm$^{-3}$ is derived, equivalent to a room-temperature pressure below 10$^{-14}$ mbar. Fast atomic, molecular and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.
We report measurements of electron impact ionization (EII) for Fe^13+, Fe^16+, and Fe^17+ over collision energies from below threshold to above 3000 eV. The ions were recirculated using an ion storage ring. Data were collected after a sufficiently long time that essentially all the ions had relaxed radiatively to their ground state before data were collected. For single ionization of $fethirteen$ we find that previous single pass experiments are more than 40% larger than our results. Compared to our work, the theoretical cross section recommended by Arnaud & Raymond (1992) is more than 30% larger, while that of Dere (2007) is about 20% greater. Much of the discrepancy with Dere (2007) is due to the theory overestimating the contribution of excitation-autoionization via n=2 excitations. Double ionization of Fe^13+ is dominated by direct ionization of an inner shell electron accompanied by autoionization of a second electron. Our results for single ionization of Fe^16+ and Fe^17+ agree with theoretical calculations to within the experimental uncertainties.
Rate coefficients for photorecombination (PR) and cross sections for electron-impact ionization (EII) of Fe$^{14+}$ forming Fe$^{13+}$ and Fe$^{15+}$, respectively, have been measured by employing the electron-ion merged-beams technique at a heavy-ion storage ring. Rate coefficients for PR and EII of Fe$^{14+}$ ions in a plasma are derived from the experimental measurements. Simple parametrizations of the experimentally derived plasma rate coefficients are provided for use in the modeling of photoionized and collisionally ionized plasmas. In the temperature ranges where Fe$^{14+}$ is expected to form in such plasmas the latest theoretical rate coefficients of Altun et al. [Astron. Astrophys. 474, 1051 (2007)] for PR and of Dere [Astron. Astrophys. 466, 771 (2007)] for EII agree with the experimental results to within the experimental uncertainties. Common features in the PR and EII resonance structures are identified and discussed.