Do you want to publish a course? Click here

Spectroscopy of the bright optical counterparts of X-ray sources in the direction of M 31. II

102   0   0.0 ( 0 )
 Added by Paolo Bonfini
 Publication date 2009
  fields Physics
and research's language is English
 Authors Paolo Bonfini




Ask ChatGPT about the research

A recent survey of the Local Group spiral galaxy M 31 with XMM-Newton yielded a large number of X-ray sources. This is the second in a series of papers with the aim of identifying the optical counterparts of these X-ray sources. We have obtained optical spectra for 21 bright optical counterparts of 20 X-ray sources in the direction of M 31, using the 1.3-m Skinakas telescope in Crete, Greece. For 17 of the 20 X-ray sources, we have identified the optical counterpart as a normal late type star (of type F or later) in the foreground (i.e. in the Milky Way). For two more sources there were two possible optical counterparts in each case, while two more objects have X-ray properties that are not compatible with the spectral characteristics of late type non-flaring stars.



rate research

Read More

Recent surveys of the Local Group spiral Galaxies M31 and M33 with XMM-Newton yielded a large number of X-ray sources. As part of the effort to identify and classify the objects responsible for this X-ray emission, we have obtained optical spectra of the brightest optical counterparts of the identified X-ray sources, using the 1.3m Skinakas Telescope. Most of these objects are foreground star candidates. The purpose of the present study is to confirm this identification and to explore the compatibility between the optical spectral classification and the observed X-ray properties of the sources. We have obtained optical spectra for the 14 brightest optical counterparts of X-ray sources identified by XMM-Newton in the direction of M31 and for 21 optical counterparts in the direction of M33, using the 1.3m Skinakas telescope in Crete, Greece. All of the M31 sources and all but one of the M33 sources were confirmed to be foreground stars, of spectral types between A and M. One of the stars is a late M dwarf with H-alpha emission, a flare star, also displaying strong X-ray variability. One of the M~33 sources (lying within the D25 ellipse) corresponds to a previously known background galaxy, LEDA 5899.
We present a photometric survey of the optical counterparts of ultraluminous X-ray sources (ULXs) observed with the Hubble Space Telescope in nearby (< 5 Mpc) galaxies. Of the 33 ULXs with Hubble & Chandra data, 9 have no visible counterpart, placing limits on their M_V of ~ -4 to -9, enabling us to rule out O-type companions in 4 cases. The refined positions of two ULXs place them in the nucleus of their host galaxy. They are removed from our sample. Of the 22 remaining ULXs, 13 have one possible optical counterpart, while multiple are visible within the error regions of other ULXs. By calculating the number of chance coincidences, we estimate that 13 +/- 5 are the true counterparts. We attempt to constrain the nature of the companions by fitting the SED and M_V to obtain candidate spectral types. We can rule out O-type companions in 20 cases, while we find that one ULX (NGC 253 ULX2) excludes all OB-type companions. Fitting with X-ray irradiated models provides constraints on the donor star mass and radius. For 7 ULXs, we are able to impose inclination-dependent upper and/or lower limits on the black holes mass, if the extinction to the assumed companion star is not larger than the Galactic column. These are NGC 55 ULX1, NGC 253 ULX1, NGC 253 ULX2, NGC 253 XMM6, Ho IX X-1, IC342 X-1 & NGC 5204 X-1. This suggests that 10 ULXs do not have O companions, while none of the 18 fitted rule out B-type companions.
142 - Vallia Antoniou 2008
We present the most likely optical counterparts of 113 X-ray sources detected in our Chandra survey of the central region of the Small Magellanic Cloud (SMC) based on the OGLE-II and MCPS catalogs. We estimate that the foreground contamination and chance coincidence probability are minimal for the bright optical counterparts (corresponding to OB type stars; 35 in total). We propose here for the first time 13 High-Mass X-ray Binaries (HMXBs), of which 4 are Be/X-ray binaries (Be-XRBs), and we confirm the previous classification of 18 Be-XRBs. We estimate that the new candidate Be-XRBs have an age of 15-85 Myr, consistent with the age of Be stars. We also examine the overabundance of Be-XRBs in the SMC fields covered by Chandra, in comparison with the Galaxy. In luminosities down to about 10^{34} erg/s, we find that SMC Be-XRBs are 1.5 times more common when compared to the Milky Way even after taking into account the difference in the formation rates of OB stars. This residual excess can be attributed to the lower metallicity of the SMC. Finally, we find that the mixing of Be-XRBs with other than their natal stellar population is not an issue in our comparisons of Be-XRBs and stellar populations in the SMC. Instead, we find indication for variation of the SMC XRB populations on kiloparsec scales, related to local variations of the formation rate of OB stars and slight variation of their age, which results in different relative numbers of Be stars and therefore XRBs.
We present the results of our continued systematic search for near-infrared (NIR) candidate counterparts to ultraluminous X-ray sources (ULXs) within 10 Mpc. We observed 42 ULXs in 24 nearby galaxies and detected NIR candidate counterparts to 15 ULXs. Fourteen of these ULXs appear to have a single candidate counterpart in our images and the remaining ULX has 2 candidate counterparts. Seven ULXs have candidate counterparts with absolute magnitudes in the range between -9.26 and -11.18 mag, consistent with them being red supergiants (RSGs). The other eight ULXs have candidate counterparts with absolute magnitudes too bright to be a single stellar source. Some of these NIR sources show extended morphology or colours expected for Active Galactic Nuclei (AGN), strongly suggesting that they are likely stellar clusters or background galaxies. The red supergiant candidate counterparts form a valuable sample for follow-up spectroscopic observations to confirm their nature, with the ultimate goal of directly measuring the mass of the compact accretor that powers the ULX using binary Doppler shifts.
During a search for coherent signals in the X-ray archival data of XMM-Newton, we discovered a modulation at 1.2 s in 3XMM J004301.4+413017 (3X J0043), a source lying in the direction of an external arm of M 31. This short period indicates a neutron star (NS). Between 2000 and 2013, the position of 3X J0043 was imaged by public XMM-Newton observations 35 times. The analysis of these data allowed us to detect an orbital modulation at 1.27 d and study the long-term properties of the source. The emission of the pulsar was rather hard (most spectra are described by a power law with $Gamma < 1$) and, assuming the distance to M 31, the 0.3-10 keV luminosity was variable, from $sim$$3times10^{37}$ to $2times10^{38}$ erg s$^{-1}$. The analysis of optical data shows that, while 3X J0043 is likely associated to a globular cluster in M 31, a counterpart with $Vgtrsim22$ outside the cluster cannot be excluded. Considering our findings, there are two main viable scenarios for 3X J0043: a peculiar low-mass X-ray binary, similar to 4U 1822-37 or 4U 1626-67, or an intermediate-mass X-ray binary resembling Her X-1. Regardless of the exact nature of the system, 3X J0043 is the first accreting NS in M 31 in which the spin period has been detected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا