Intermediate resolution (0.5-1 Angs) optical spectroscopy of the cataclysmic variable SY Cnc reveals the spectrum of the donor star. Our data enable us to resolve the orbital motion of the donor and provide a new orbital solution, binary mass ratio and spectral classification. We find that the donor star has spectral type G8+-2 V and orbits the white dwarf with P=0.3823753 +- 0.0000003 day, K2=88.0 +-2.9 km/s and V sin i=75.5 +- 6.5 km/s. Our values are significantly different from previous works and lead to q=M2/M1=1.18 +- 0.14. This is one of the highest mass ratios known in a CV and is very robust because it is based on resolving the rotational broadening over a large number of metallic absorption lines. The donor could be a slightly evolved main-sequence or descendant from a massive star which underwent an episode of thermal-timescale mass transfer.
The pressure exerted by massive stars radiation fields is an important mechanism regulating their formation. Detailed simulation of massive star formation therefore requires an accurate treatment of radiation. However, all published simulations have either used a diffusion approximation of limited validity; have only been able to simulate a single star fixed in space, thereby suppressing potentially-important instabilities; or did not provide adequate resolution at locations where instabilities may develop. To remedy this we have developed a new, highly accurate radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform three-dimensional radiation-hydrodynamic simulations of the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the stellar system via gravitational and Rayleigh-Taylor (RT) instabilities, in agreement with previous results using stars capable of moving, but in disagreement with methods where the star is held fixed or with simulations that do not adequately resolve the development of RT instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of instability, but does not suppress it entirely provided the edges of radiation-dominated bubbles are adequately resolved. Instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. Our results suggest that RT features are significant and should be present around accreting massive stars throughout their formation.
We present the orbital solution of a peculiar double-lined spectroscopic and eclipsing binary system, 2M17091769+3127589. This solution was obtained by a simultaneous fit of both APOGEE radial velocities and TESS and ASAS-SN light curves to determine masses and radii. This system consists of an $M=0.256^{+0.010}_{-0.006}$ $M_odot$, $R=3.961^{+0.049}_{-0.032}$ $R_{odot}$ red giant and a hotter $M=1.518 ^{+0.057}_{-0.031}$ $M_odot$, $R=2.608^{+0.034}_{-0.321}$ $R_{odot}$ subgiant. Modelling with the MESA evolutionary codes indicates that the system likely formed 5.26 Gyrs ago, with a $M=1.2$ $M_odot$ primary that is now the systems red giant and a $M=1.11$ $M_odot$ secondary that is now a more massive subgiant. Due to Roche-lobe overflow as the primary ascends the red giant branch, the more evolved primary (i.e., originally the more massive star of the pair) is now only one-sixth as massive as the secondary. Such a difference between the initial and the current mass ratio is one of the most extreme detected so far. Evolutionary modelling suggests the system is still engaged in mass transfer, at a rate of $dot{M} sim 10^{-9}$ $M_odot$ yr$^{-1}$, and it provides an example of a less evolved precursor to some of the systems that consist of white dwarfs and blue stragglers.
The stability of mass transfer in binaries with convective giant donors remains an open question in modern astrophysics. There is a significant discrepancy between what the existing methods predict for a response to mass loss of the giant itself, as well as for the mass transfer rate during the Roche lobe overflow. Here we show that the recombination energy in the superadiabatic layer plays an important and hitherto unaccounted-for role in he donors response to mass loss, in particular on its luminosity and effective temperature. Our improved optically thick nozzle method to calculate the mass transfer rate via $L_1$ allows us to evolve binary systems for a substantial Roche lobe overflow. We propose a new, strengthened criterion for the mass transfer instability, basing it on whether the donor experiences overflow through its outer Lagrangian point. We find that with the new criterion, if the donor has a well-developed outer convective envelope, the critical initial mass ratio for which a binary would evolve stably through the conservative mass transfer varies from $1.5$ to $2.2$, which is about twice as large as previously believed. In underdeveloped giants with shallow convective envelopes this critical ratio may be even larger. When the convective envelope is still growing, and in particular for most cases of massive donors, the critical mass ratio gradually decreases to this value, from that of radiative donors.
This is a period study of the bright interacting southern eclipsing binary star R Arae. New photometric data are combined with archival data to determine R Aras average mass transfer rate over the past 116 years through the analysis of the resulting ephemeris curve. An updated ephemeris is given.
Recent observations of two unusual Z Cam systems, V513 Cas and IW And have shown light curves that seem to contradict the disc-instability model for dwarf novae: outbursts are appearing during standstills of the system when according to the model, the disc is supposed to be in a hot quasi-equilibrium state. We investigate what additional physical processes need to be included in the model to reconcile it with observations of such anomalous Z Cam systems. We used our code for modeling thermal-viscous outbursts of the accretion discs and determined what types of mass-transfer variations reproduce the observed light curves. Outbursts of mass transfer (with a duration of a few days, with a short rise time and an exponential decay) from the stellar companion will account for the observed properties of V513 Cas and IW And, provided they are followed by a short but significant mass-transfer dip. The total mass involved in outbursts is of the order of 10$^{23}$g. We studied the possible origins of these mass transfer outbursts and showed that they most probably result from a giant flare near the secondary star surface, possibly due to the absence of star spots in the $L_1$ region.