Do you want to publish a course? Click here

Superfluid Quenching of the Moment of Inertia in a Strongly Interacting Fermi Gas

111   0   0.0 ( 0 )
 Added by Rudolf Grimm
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the observation of a quenched moment of inertia as resulting from superfluidity in a strongly interacting Fermi gas. Our method is based on setting the hydrodynamic gas in slow rotation and determining its angular momentum by detecting the precession of a radial quadrupole excitation. The measurements distinguish between the superfluid or collisional origin of hydrodynamic behavior, and show the phase transition.



rate research

Read More

We study the expansion of a rotating, superfluid Fermi gas. The presence and absence of vortices in the rotating gas is used to distinguish superfluid and normal parts of the expanding cloud. We find that the superfluid pairs survive during the expansion until the density decreases below a critical value. Our observation of superfluid flow at this point extends the range where fermionic superfluidity has been studied to densities of 1.2 10^{11} cm^{-3}, about an order of magnitude lower than any previous study.
Ultracold atomic Fermi gases present an opportunity to study strongly interacting Fermi systems in a controlled and uncomplicated setting. The ability to tune attractive interactions has led to the discovery of superfluidity in these systems with an extremely high transition temperature, near T/T_F = 0.2. This superfluidity is the electrically neutral analog of superconductivity; however, superfluidity in atomic Fermi gases occurs in the limit of strong interactions and defies a conventional BCS description. For these strong interactions, it is predicted that the onset of pairing and superfluidity can occur at different temperatures. This gives rise to a pseudogap region where, for a range of temperatures, the system retains some of the characteristics of the superfluid phase, such as a BCS-like dispersion and a partially gapped density of states, but does not exhibit superfluidity. By making two independent measurements: the direct observation of pair condensation in momentum space and a measurement of the single-particle spectral function using an analog to photoemission spectroscopy, we directly probe the pseudogap phase. Our measurements reveal a BCS-like dispersion with back-bending near the Fermi wave vector k_F that persists well above the transition temperature for pair condensation.
Many-body fermion systems are important in many branches of physics, including condensed matter, nuclear, and now cold atom physics. In many cases, the interactions between fermions can be approximated by a contact interaction. A recent theoretical advance in the study of these systems is the derivation of a number of exact universal relations that are predicted to be valid for all interaction strengths, temperatures, and spin compositions. These equations, referred to as the Tan relations, relate a microscopic quantity, namely, the amplitude of the high-momentum tail of the fermion momentum distribution, to the thermodynamics of the many-body system. In this work, we provide experimental verification of the Tan relations in a strongly interacting gas of fermionic atoms. Specifically, we measure the fermion momentum distribution using two different techniques, as well as the rf excitation spectrum and determine the effect of interactions on these microscopic probes. We then measure the potential energy and release energy of the trapped gas and test the predicted universal relations.
In this work, the normal density $rho_n$ and moment of inertia of a moving superfluid are investigated. We find that, even at zero temperature, there exists a finite normal density for the moving superfluid. When the velocity of superfluid reaches sound velocity, the normal density becomes total mass density $rho$, which indicates that the system losses superfluidity. At the same time, the Landaus critical velocity also becomes zero. The existence of the non-zero normal density is attributed to the coupling between the motion of superflow and density fluctuation in transverse directions. With Josephson relation, the superfluid density $rho_s$ is also calculated and the identity $rho_s+rho_n=rho$ holds. Further more, we find that the finite normal density also results in a quantized moment of inertia in a moving superfluid trapped by a ring. The normal density and moment of inertia at zero temperature could be verified experimentally by measuring the angular momentum of a moving superfluid in a ring trap.
We present an experimental investigation of the dynamic spin response of a strongly interacting Fermi gas using Bragg spectroscopy. By varying the detuning of the Bragg lasers, we show that it is possible to measure the response in the spin and density channels separately. At low Bragg energies, the spin response is suppressed due to pairing, whereas the density response is enhanced. These experiments provide the first independent measurements of the spin-parallel and spin-antiparallel dynamic and static structure factors and open the way to a complete study of the structure factors at any momentum. At high momentum the spin-antiparallel dynamic structure factor displays a universal high frequency tail, proportional to $omega^{-5/2}$, where $hbar omega$ is the probe energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا