We will report on the electromagnetic response due to induced dipolar currents in metamaterials of 2-dimensional array of metallic elements. Used as frequency selectors, the metamaterial transmittance presents a single resonance in the region from 1 to 8 THz that can be easily selected and scaled maintaining unaltered the quality factor by choosing the size and shape of the planar metallic element and exploiting the scalability properties of the Maxwell equations. Basing on these studies, we have designed and tested a series of simple and inexpensive frequency selective metamaterials fabricated by using lithographic processes.
Plasmon induced transparency (PIT) effect in a terahertz graphene metamaterial is numerically and theoretically analyzed. The proposed metamaterial comprises of a pair of graphene split ring resonators placed alternately on both sides of a graphene strip of nanometer scale. The PIT effect in the graphene metamaterial is studied for different vertical and horizontal configurations. Our results reveal that there is no PIT effect in the graphene metamaterial when the centers of both the split ring resonators and the graphene strip are collinear to each other. This is a noteworthy feature, as the PIT effect does not vanish for similar configuration in a metal-based metamaterial structure. We have further shown that the PIT effect can be tuned by varying the Fermi energy of graphene layer. A theoretical model using the three level plasmonic system is established in order to validate the numerical results. Our studies could be significant in designing graphene based frequency agile ultra-thin devices for terahertz applications.
We report an experimental demonstration of thermal tuning of resonance frequency in a planar terahertz metamaterial consisting of a gold split-ring resonator array fabricated on a bulk single crystal strontium titanate (SrTiO3) substrate. Cooling the metamaterial starting from 409 K down to 150 K causes about 50% shift in resonance frequency as compare to its room temperature resonance, and there is very little variation in resonance strength. The resonance shift is due to the temperature-dependent refractive index (or the dielectric constant) of the strontium titanate. The experiment opens up avenues for designing tunable terahertz devices by exploiting the temperature sensitive characteristic of high dielectric constant substrates and complex metal oxide materials.
Negative index metamaterials (NIMs) give rise to unusual and intriguing properties and phenomena, which may lead to important applications such as superlens, subwavelength cavity and slow light devices. However, the negative refractive index in metamaterials normally requires a stringent condition of simultaneously negative permittivity and negative permeability. A new class of negative index metamaterials - chiral NIMs, have been recently proposed. In contrast to the conventional NIMs, chiral NIMs do not require the above condition, thus presenting a very robust route toward negative refraction. Here we present the first experimental demonstration of a chiral metamaterial exhibiting negative refractive index down to n=-5 at terahertz frequencies, with only a single chiral resonance. The strong chirality present in the structure lifts the degeneracy for the two circularly polarized waves and relieves the double negativity requirement. Chiral NIM are predicted to possess intriguing electromagnetic properties that go beyond the traditional NIMs, such as opposite signs of refractive indices for the two circular polarizations and negative reflection. The realization of terahertz chiral NIMs offers new opportunities for investigations of their novel electromagnetic properties, as well as important terahertz device applications.
In this Letter we present resonance properties in terahertz metamaterials consisting of a split-ring resonator array made from high temperature superconducting films. By varying the temperature, we observed efficient metamaterial resonance switching and frequency tuning with some features not revealed before. The results were well reproduced by numerical simulations of metamaterial resonance using the experimentally measured complex conductivity of the superconducting film. We developed a theoretical model that explains the tuning features, which takes into account the resistive resonance damping and additional split-ring inductance contributed from both the real and imaginary parts of the temperature-dependent complex conductivity. The theoretical model further predicted more efficient resonance switching and frequency shifting in metamaterials consisting of a thinner superconducting split-ring resonator array, which were also verified in experiments.
This work theoretically and analytically demonstrates the magnetic field-induced spectral radiative properties of photonic metamaterials incorporating both Indium Antimonide (InSb) and Tungsten (W) in the terahertz (THz) frequency regime. We have varied multiple factors of the nanostructures, including composite materials, layer thicknesses and surface grating fill factors, which impact the light-matter interactions and in turn modify the thermal emission of the metamaterials. We have proposed and validated a method for determining the spectral properties of InSb under an applied direct current (DC) magnetic field, and have employed this method to analyze how these properties can be dynamically tuned by modulating the magnitude of the field. For the first time, we have designed an InSb-W metamaterial exhibiting unity narrowband emission which can serve as an emitter for wavelengths around 55 $mu$m (approximately 5.5 THz). Additionally, the narrowband emission of this metamaterial can be magnetically tuned in both bandwidth and peak wavelength with a normal emissivity close to unity.
C. Rizza
,E. Palange
,P. Carelli
.
(2009)
.
"Characterization of dipolar current-based metamaterials showing a single resonance in the terahertz spectrum"
.
Carlo Rizza
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا