Do you want to publish a course? Click here

Direct observation of superconducting vortex clusters pinned by a periodic array of magnetic dots in ferromagnetic/superconducting hybrid structures

297   0   0.0 ( 0 )
 Added by Tetyana Shapoval
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Strong pinning of superconducting flux quanta by a square array of 1 $mu$m-sized ferromagnetic dots in a magnetic-vortex state was visualized by low-temperature magnetic force microscopy (LT-MFM). A direct correlation of the superconducting flux lines with the positions of the dots was derived. The force that the MFM tip exerts on the individual vortex in the depinning process was used to estimate the spatial modulation of the pinning potential. It was found, that the superconducting vortices which are preferably located on top of the Py dots experience about 15 times stronger pinning forces as compared to the pinning force in the pure Nb film. The strong pinning exceeds the repulsive interaction between the superconducting vortices and allows the vortex clusters to be located at each dot. Our microscopic studies are consistent with global magnetoresistace measurements on these hybrid structures.



rate research

Read More

A superconducting rod with a magnetic moment on top develops vortices obtained here through 3D calculations of the Ginzburg-Landau theory. The inhomogeneity of the applied field brings new properties to the vortex patterns that vary according to the rod thickness. We find that for thin rods (disks) the vortex patterns are similar to those obtained in presence of a homogeneous magnetic field instead because they consist of giant vortex states. For thick rods novel patterns are obtained as vortices are curve lines in space that exit through the lateral surface.
We investigate theoretically vortex-antivortex (v-av) matter moving in thin superconducting films with a regular array of in-plane magnetic dipoles. Our model considers v-av pair creation induced by the local current density generated by the magnetic texture and the transport current and simulates the dynamics of vortices and antivortices by numerical integration of the Langevin equation of motion. Calculations of the transport properties at zero applied field show a strong dependence of the v-av dynamics on the current intensity and direction. The dynamics of the v-av matter is characterized by a series of creation and annihilation processes, which reflect on the time dependence of the electrical field, and by guided motion, resulting in a zero-field transverse resistance.
266 - K. Yu 2010
Vortices confined to superconducting easy flow channels with periodic constrictions exhibit reversible oscillations in the critical current at which vortices begin moving as the external magnetic field is varied. This commensurability scales with the channel shape and arrangement, although screening effects play an important role. For large magnetic fields, some of the vortices become pinned outside of the channels, leading to magnetic hysteresis in the critical current. Some channel configurations also exhibit a dynamical hysteresis in the flux-flow regime near the matching fields.
We show that the superconducting energy gap $Delta$ can be directly observed in phonon spectra, as predicted by recent theories. In addition, since each phonon probes the gap on only a small part of the Fermi surface, the gap anisotropy can be studied in detail. Our neutron scattering investigation of the anisotropic conventional superconductor YNi$_2$B$_2$C demonstrates this new application of phonon spectroscopy.
The vortex dynamics in superconducting films deposited on top of a five-fold Penrose array of magnetic dots is studied by means of transport measurements. We show that in the low pinning regime (demagnetized dots) a few periodic and aperiodic matching features coexist. In the strong pinning regime (magnetized dots) a richer structure of unforeseen periodic and aperiodic vortex patterns appear giving rise to a clear enhancement of the critical current in a broader field range. Possible stable vortex configurations are determined by molecular dynamics simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا