Do you want to publish a course? Click here

Vortex dynamics in superconducting channels with periodic constrictions

263   0   0.0 ( 0 )
 Added by Kang Yu
 Publication date 2010
  fields Physics
and research's language is English
 Authors K. Yu




Ask ChatGPT about the research

Vortices confined to superconducting easy flow channels with periodic constrictions exhibit reversible oscillations in the critical current at which vortices begin moving as the external magnetic field is varied. This commensurability scales with the channel shape and arrangement, although screening effects play an important role. For large magnetic fields, some of the vortices become pinned outside of the channels, leading to magnetic hysteresis in the critical current. Some channel configurations also exhibit a dynamical hysteresis in the flux-flow regime near the matching fields.



rate research

Read More

267 - K. Yu 2008
The controlled motion of objects through narrow channels is important in many fields. We have fabricated asymmetric weak-pinning channels in a superconducting thin-film strip for controlling the dynamics of vortices. The lack of pinning allows the vortices to move through the channels with the dominant interaction determined by the shape of the channel walls. We present measurements of vortex dynamics in the channels and compare these with similar measurements on a set of uniform-width channels. While the uniform-width channels exhibit a symmetric response for both directions through the channel, the vortex motion through the asymmetric channels is quite different, with substantial asymmetries in both the static depinning and dynamic flux flow. This vortex ratchet effect has a rich dependence on magnetic field and driving force amplitude.
We report on the design, fabrication and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50 nm, the radio frequency currents are concentrated and the magnetic field in its vicinity is increased. The device characteristics are only slightly modified by the constrictions, with changes in resonance frequency lower than 1% and internal quality factors of the same order of magnitude as the original ones. These devices could enable the achievement of higher couplings to small magnetic samples or even to single molecular spins and have applications in circuit quantum electrodynamics, quantum computing and electron paramagnetic resonance.
305 - V. V. Baranov , A. G. Balanov , 2013
We theoretically study how the dynamics of the resistive state in narrow superconducting channels shunted by an external resistor depends on channels length $L$, the applied current $j$, and parameter $u$ characterizing the penetration depth of the electric field in the nonequilibrium superconductors. We show that changing $u$ dramatically affects both the behaviour of the current-voltage characteristics of the superconducting channels and the dynamics of their order parameter. Previously, it was demonstrated that when $u$ is less than the critical value $u_{c1}$, which does not depend on $L$, the phase slip centers appear simultaneously at different spots of the channel. Herewith, for $u>u_{c1}$ these centres arise consecutively at the same place. In our work we demonstrate that there is another critical value for $u$. Actually, if $u$ does not exceed a certain value $u_{c2}$, which depends on $L$, the current-voltage characteristic exhibits the step-like behaviour. However, for $u>u_{c2}$ it becomes hysteretic. In this case, with increase of $j$ the steady state, which corresponds to the time independent distribution of the order parameter along the channel, losses its stability at switching current value $j_{sw}$, and time periodic oscillations of both the order parameter and electric filed occur in the channel. As $j$ sweeps down, the periodic dynamics ceases at certain retrapping current value $j_r<j_{sw}$. Shunting the channel by a resistor increases the value of $j_r$, while $j_{sw}$ remains unchanged. Thus, for some high enough conductivity of the shunt $j_r$ and $j_{sw}$ eventually coincide, and the hysteretic loop disappears. We reveal dynamical regimes involved in the hysteresis, and discuss the bifurcation transitions between them.
150 - N.S. Lin , V.R. Misko , 2009
The discrete shell structure of vortex matter strongly influences the flux dynamics in mesoscopic superconducting Corbino disks. While the dynamical behavior is well understood in large and in very small disks, in the intermediate-size regime it occurs to be much more complex and unusual, due to (in)commensurability between the vortex shells. We demonstrate unconventional vortex dynamics (inversion of shell velocities with respect to the gradient driving force) and angular melting (propagating from the boundary where the shear stress is minimum, towards the center) in mesoscopic Corbino disks.
Vortex dynamics in superconductors have received a great deal of attention from both fundamental and applied researchers over the past few decades. Because of its critical role in the energy relaxation process of type-II superconductors, vortex dynamics have been deemed a key contributor to the response rate of the emerging superconducting single photon detector (SSPD). With the support of electrical transport measurements under external magnetic fields, vortex dynamics in superconducting a-MoSi thin films are investigated in this work. It is ascertained that the vortex state changes from pinned to flux flow under the influence of the Lorentz force. The critical vortex velocity v* and quasi-particle inelastic scattering time {tau}* under different magnetic fields are derived from the Larkin-Ovchinnikov model. Under high magnetic fields, the v* power law dependence (v*~B-1/2) collapses, i.e., v* tends to zero, which is attributed to the obstruction of flux flow by the intrinsic defects, while the {tau}* increases with the increasing magnetic field strength. In addition, the degree of vortex rearrangement is found to be enhanced by photon-induced reduction in potential barrier, which mitigates the adverse effect of film inhomogeneity on superconductivity in the a-MoSi thin films. The thorough understanding of the vortex dynamics in a-MoSi thin films under the effect of external stimuli is of paramount importance for both further fundamental research in this area and optimization of SSPD design.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا