Do you want to publish a course? Click here

Transverse momentum distributions inside the nucleon from lattice QCD

185   0   0.0 ( 0 )
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

This work applies lattice QCD to compute quark momentum distributions in the nucleon. We explore a novel approach based on non-local operators in order to analyze transverse momentum dependent parton distribution functions, which encode information about the intrinsic motion of quarks inside the nucleon. Our calculations are based on MILC gauge configurations and domain wall fermion propagators from LHPC. One interesting observation is that the transverse momentum dependent density of polarized quarks in a polarized nucleon is visibly deformed. Moreover, we can test the assumption that longitudinal and transverse momentum dependence factorize within a certain kinematical region. A more elaborate operator geometry is required to enable a quantitative comparison to azimuthal asymmetries observable in experiments such as semi-inclusive deeply inelastic scattering, and to study time-reversal odd distributions such as the Sivers function. First steps in this direction are encouraging.



rate research

Read More

132 - Bernhard U. Musch 2008
Transverse momentum dependent parton distribution functions (TMDPDFs) encode information about the intrinsic motion of quarks inside the nucleon. They are important non-perturbative ingredients in our understanding of, e.g., azimuthal asymmetries and other qualitative features in semi-inclusive deep inelastic scattering experiments. We present first calculations on the lattice, based on MILC gauge configurations and propagators from LHPC. They yield polarized and unpolarized transverse momentum dependent quark densities and enable us to test the assumption of factorization in x and transverse momentum. The operators we employ are non-local and contain a Wilson line, whose renormalization requires the removal of a divergence linear in the cutoff 1/a.
This work presents the first calculation in lattice QCD of three moments of spin-averaged and spin-polarized generalized parton distributions in the proton. It is shown that the slope of the associated generalized form factors decreases significantly as the moment increases, indicating that the transverse size of the light-cone quark distribution decreases as the momentum fraction of the struck parton increases.
A better understanding of transverse momentum (k_T-) dependent quark distributions in a hadron is needed to interpret several experimentally observed large angular asymmetries and to clarify the fundamental role of gauge links in non-abelian gauge theories. Based on manifestly non-local gauge invariant quark operators we introduce process-independent k_T-distributions and study their properties in lattice QCD. We find that the longitudinal and transverse momentum dependence approximately factorizes, in contrast to the behavior of generalized parton distributions. The resulting quark k_T-probability densities for the nucleon show characteristic dipole deformations due to correlations between intrinsic k_T and the quark or nucleon spin. Our lattice calculations are based on N_f=2+1 mixed action propagators of the LHP collaboration.
164 - Bernhard U. Musch 2010
We discuss in detail a method to study transverse momentum dependent parton distribution functions (TMDs) using lattice QCD. To develop the formalism and to obtain first numerical results, we directly implement a bi-local quark-quark operator connected by a straight Wilson line, allowing us to study T-even, process-independent TMDs. Beyond results for x-integrated TMDs and quark densities, we present a study of correlations in x and transverse momentum. Our calculations are based on domain wall valence quark propagators by the LHP collaboration calculated on top of gauge configurations provided by MILC with 2+1 flavors of asqtad-improved staggered sea quarks.
Lattice QCD calculations of transverse momentum-dependent parton distribution functions (TMDs) in nucleons are presented, based on the evaluation of nucleon matrix elements of quark bilocal operators with a staple-shaped gauge connection. Both time-reversal odd effects, namely, the generalized Sivers and Boer-Mulders transverse momentum shifts, as well as time-reversal even effects, namely, the generalized transversity and one of the generalized worm-gear shifts are studied. Results are obtained on two different $n_f = 2+1$ flavor ensembles with approximately matching pion masses but very different discretization schemes: domain-wall fermions (DWF) with lattice spacing $a=0.084$ fm and pion mass 297 MeV, and Wilson-clover fermions with $a=0.114$ fm and pion mass 317 MeV. Comparison of the results on the two ensembles yields insight into the length scales at which lattice discretization errors are small, and into the extent to which the renormalization pattern obeyed by the continuum QCD TMD operator continues to apply in the lattice formulation. For the studied TMD observables, the results are found to be consistent between the two ensembles at sufficiently large separation of the quark fields within the operator, whereas deviations are observed in the local limit and in the case of a straight link gauge connection, which is relevant to the studies of parton distribution functions. Furthermore, the lattice estimates of the generalized Sivers shift obtained here are confronted with, and are seen to tend towards, a phenomenological estimate extracted from experimental data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا