Do you want to publish a course? Click here

Sensitive detection of photoexcited carriers by resonant tunneling through a single quantum dot

201   0   0.0 ( 0 )
 Added by Vdovin Evgenij
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the resonant tunnel current through a single energy level of an individual quantum dot within an ensemble of dots is strongly sensitive to photoexcited holes that become bound in the close vicinity of the dot. The presence of these holes lowers the electrostatic energy of the quantum dot state and switches the current carrying channel from fully open to fully closed with a high on/off ratio (> 50). The device can be reset by means of a bias voltage pulse. These properties are of interest for charge sensitive photon counting devices.



rate research

Read More

A scheme of resonant tunneling through the metastable state of semiconductor quantum dot is presented and implemented in the transport study of freestanding InAs quantum dots grown on GaAs(001) under illumination using conductive atomic force microscopy. The metastable state is achieved by capturing one photoexcited Fermi hole in the valence energy level of InAs quantum dot. Resonant tunneling through single quantum dot can be observed at room temperature due to the existence of metastable state. The amplitude of tunneling current depends on the barrier arrangement and the concentration of photoexcited holes around the quantum dot, but is found steady when the height of dot varies from 1.8 to 9.9 nm, which are in good agreement with the proposed model. The experiment demonstrates a solution of room temperature operated single electron device to amplify the photocurrent by the singularity of resonant tunneling in epitaxial quantum dot.
Real-time detection of single electron tunneling through a T-shaped double quantum dot is simulated, based on a Monte Carlo scheme. The double dot is embedded in a dissipative environment and the presence of electrons on the double dot is detected with a nearby quantum point contact. We demonstrate directly the bunching behavior in electron transport, which leads eventually to a super-Poissonian noise. Particularly, in the context of full counting statistics, we investigate the essential difference between the dephasing mechanisms induced by the quantum point contact detection and the coupling to the external phonon bath. A number of intriguing noise features associated with various transport mechanisms are revealed.
We theoretically study the conditional counting statistics of electron transport through a system consisting of a single quantum dot (SQD) or coherently coupled double quantum dots (DQDs) monitored by a nearby quantum point contact (QPC) using the generating functional approach with the maximum eigenvalue of the evolution equation matrix method, the quantum trajectory theory method (Monte Carlo method), and an efficient method we develop. The conditional current cumulants that are significantly different from their unconditional counterparts can provide additional information and insight into the electron transport properties of mesoscopic nanostructure systems. The efficient method we develop for calculating the conditional counting statistics is numerically stable, and is capable of calculating the conditional counting statistics for a more complex system than the maximum eigenvalue method and for a wider range of parameters than the quantum trajectory method. We apply our method to investigate how the QPC shot noise affects the conditional counting statistics of the SQD system, going beyond the treatment and parameter regime studied in the literature. We also investigate the case when the interdot coherent coupling is comparable to the dephasing rate caused by the back action of the QPC in the DQD system, in which there is considerable discrepancy in the calculated conditional current cumulants between the population rate (master-) equation approach of sequential tunneling and the full quantum master-equation approach of coherent tunneling.
We report electronic transport measurements through a silicon hybrid double quantum dot consisting of a donor and a quantum dot. Transport spectra show resonant tunneling peaks involving different valley states, which illustrate the valley splitting in a quantum dot on a Si/SiO2 interface. The detailed gate bias dependence of double dot transport allows a first direct observation of the valley splitting in the quantum dot, which is controllable between 160-240 ueV with an electric field dependence 1.2 +- 0.2 meV/(MV/m). A large valley splitting is an essential requirement to implement a physical electron spin qubit in a silicon quantum dot.
275 - F. T. Vasko , V. V. Mitin 2012
The diffusion of electron-hole pairs, which are excited in an intrinsic graphene by the ultrashort focused laser pulse in mid-IR or visible spectral region, is described for the cases of peak-like or spread over the passive region distributions of carriers. The spatio-temporal transient optical response on a high-frequency probe beam appears to be strongly dependent on the regime of diffusion and can be used for verification of the elasic relaxation mechanism. Sign flip of the differential transmission coefficient takes place due to interplay of the carrier-induced contribution and weak dynamic conductivity of undoped graphene.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا