Do you want to publish a course? Click here

Variation of Inner Radius of Dust Torus in NGC4151

115   0   0.0 ( 0 )
 Added by Shintaro Koshida
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The long-term optical and near infrared monitoring observations for a type 1 act ive galactic nucleus NGC 4151 were carried out for six years from 2001 to 2006 b y using the MAGNUM telescope, and delayed response of flux variations in the $K(2.2mu m)$ band to those in the $V(0.55mu m)$ band was clearly detected. Based on cross correlation analysis, we precisely measured a lag time $Delta t$ for eight separate periods, and we found that $Delta t$ is not constant changing be tween 30 and 70 days during the monitoring period. Since $Delta t$ is the ligh t travel time from the central energy source out to the surrounding dust torus, this is the first convincing evidence that the inner radius of dust torus did ch ange in an individual AGN. In order to relate such a change of $Delta t$ with a change of AGN luminosity $L$, we presented a method of taking an average of th e observed $V$-band fluxes that corresponds to the measured value of $Delta t$, and we found that the time-changing track of NGC 4151 in the $Delta t$ versus $L$ diagram during the monitoring period deviates from the relation of $Delta t propto L^{0.5}$ expected from dust reverberation. This result, combined with t he elapsed time from period to period for which $Delta t$ was measured, indicat es that the timescale of dust formation is about one year, which should be taken into account as a new constraint in future studies of dust evolution in AGNs.



rate research

Read More

We present the results of a dust reverberation survey for 17 nearby Seyfert 1 galaxies, which provides the largest homogeneous data collection for the radius of the innermost dust torus. A delayed response of the K-band light curve after the V-band light curve was found for all targets, and 49 measurements of lag times between the flux variation of the dust emission in the K band and that of the optical continuum emission in the V band were obtained. The lag times strongly correlated with the optical luminosity in the luminosity range of M_V=-16 to -22 mag, and the regression analysis was performed to obtain the correlation log $Delta t$ (days) = -2.11 -0.2 M_V assuming $Delta t propto L^{0.5}$, which was theoretically expected. We discuss the possible origins of the intrinsic scatter of the dust lag-luminosity correlation, which was estimated to be about 0.13 dex, and we find that the difference of internal extinction and delayed response of changes in lag times to the flux variations could have partly contributed to intrinsic scatter. However, we could not detect any systematic change of the correlation with the subclass of the Seyfert type or the Eddington ratio. Finally, we compare the dust reverberation radius with the near-infrared interferometric radius of the dust torus and the reverberation radius of broad Balmer emission lines. The interferometric radius in the K band was found to be systematically larger than the dust reverberation radius in the same band by about a factor of two, which could be interpreted by the difference between the flux-weighted radius and the response-weighted radius of the innermost dust torus. The reverberation radius of the broad Balmer emission lines was found to be systematically smaller than the dust reverberation radius by about a factor of 4-5, which strongly supports the unified scheme of the Seyfert type of active galactic nuclei. (Abridged)
We investigate the correlation between infrared (JHKL) and optical (B) fluxes of the variable nucleus of the Seyfert galaxy NGC 4151 using partially published data for the last 6 years (2008-2013.). Here we are using the same data as in Oknyansky et al. (2014), but include also optical (B) data from Guo et al. We find that the lag of flux in all the infrared bands is the same, 40 +- 6 days, to within the measurement accuracy. Variability in the J and K bands is not quite simultaneous, perhaps due to the differing contributions of the accretion disk in these bands. The lag found for the K band compared with the B band is not significantly different from earlier values obtained for the period 2000-2007. However, finding approximately the same lags in all IR bands for 2008-2013 differs from previous results at earlier epochs when the lag increased with increasing wavelength. Examples of almost the same lag in different IR bands are known for some other active nuclei. In the case of NGC 4151 it appears that the relative lags between the IR bands may be different in different years. The available data, unfortunately, do not allow us to investigate a possible change in the lags during the test interval. We discuss our results in the framework of the standard model where the variable infrared radiation is mainly due to thermal re-emission from the part of the dusty torus closest to the central source. There is also a contribution of some IR emission from the accretion disk, and this contribution increases with decreasing wavelength. Some cosmological applications of obtained results are discussed.
Active galactic nuclei (AGN) are high luminosity sources powered by accretion of matter onto SMBHs located at the centres of galaxies. The SMBH is surrounded by a broad emission line region (BLR) and a dusty torus. It is difficult to study the extent of the dusty torus as the central region of AGN is not resolvable using any conventional imaging techniques available today. Though, current IR interferometric techniques could in principle resolve the torus in nearby AGN, it is very expensive and limited to few bright and nearby AGN. A more feasible alternative to the interferometric technique to find the extent of the dusty torus in AGN is the technique of reverberation mapping (RM). REMAP (REverberation Mapping of AGN Program) is a long term photometric monitoring program being carried out using the 2 m HCT operated by the IIA, Bangalore, aimed at measuring the torus size in many AGN using the technique of RM. It involves accumulation of suitably long and well sampled light curves in the optical and near-infrared bands to measure the time delays between the light curves in different wavebands. These delays are used to determine the radius of the inner edge of the dust torus. REMAP was initiated in the year 2016 and since then about one hour of observing time once every five days (weather permitting) has been allocated at the HCT. Our initial sample carefully selected for this program consists of a total of 8 sources observable using the HCT. REMAP has resulted in the determination of the extent of the inner edge of the dusty torus in one AGN namely H0507+164. Data accumulation for the second source is completed and observations on the third source are going on. We will outline the motivation of this observational program, the observational strategy that is followed, the analysis procedures adopted for this work and the results obtained from this program till now.
We present new interferometric data obtained with MIDI (MID infrared Interferometric instrument) for the Seyfert II galaxy NGC 1068, with an extensive coverage of sixteen uv points. These observations resolve the nuclear mid-infrared emission from NGC 1068 in unprecedented detail with a maximum resolution of 7 mas. For the first time, sufficient uv points have been obtained, allowing us to generate an image of the source using maximum entropy image reconstruction. The features of the image are similar to those obtained by modelling. We find that the mid-infrared emission can be represented by two components, each with a Gaussian brightness distribution. The first, identified as the inner funnel of the obscuring torus, is hot (800K), 1.35 parsec long, and 0.45 parsec thick in FWHM at a PA=-42 degrees (from north to east). It has an absorption profile different than standard interstellar dust and with evidence for clumpiness. The second component is 3 by 4 pc in FWHM with T=300K, and we identify it with the cooler body of the torus. The compact component is tilted by 45 degrees with respect to the radio jet and has similar size and orientation to the observed water maser distribution. We show how the dust distribution relates to other observables within a few parsecs of the core of the galaxy such as the nuclear masers, the radio jet, and the ionization cone. We compare our findings to a similar study of the Circinus galaxy and other relevant studies. Our findings shed new light on the relation between the different parsec-scale components in NGC 1068 and the obscuring torus.
114 - Mariska Kriek 2013
This letter utilizes composite spectral energy distributions (SEDs) constructed from NEWFIRM Medium-Band Survey photometry to constrain the dust attenuation curve in 0.5<z<2.0 galaxies. Based on similarities between the full SED shapes (0.3-8 micron), we have divided galaxies in 32 different spectral classes and stacked their photometry. As each class contains galaxies over a range in redshift, the resulting rest-frame SEDs are well-sampled in wavelength and show various spectral features including Halpha and the UV dust bump at 2175 Angstrom. We fit all composite SEDs with flexible stellar population synthesis models, while exploring attenuation curves with varying slopes and UV bump strengths. The Milky Way and Calzetti law provide poor fits at UV wavelengths for nearly all SEDs. Consistent with previous studies, we find that the best-fit attenuation law varies with spectral type. There is a strong correlation between the best-fit dust slope and UV bump strength, with steeper laws having stronger bumps. Moreover, the attenuation curve correlates with specific star formation rate (SFR), with more active galaxies having shallower dust curves and weaker bumps. There is also a weak correlation with inclination. The observed trends can be explained by differences in the dust-to-star geometry, a varying grain size distribution, or a combination of both. Our results have several implications for galaxy evolution studies. First, the assumption of a universal dust model leads to biases in derived galaxy properties. Second, the presence of a dust bump may result in underestimated values for the UV slope, used to correct SFRs of distant galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا