Do you want to publish a course? Click here

The Dust Attenuation Law in Distant Galaxies: Evidence for Variation with Spectral Type

115   0   0.0 ( 0 )
 Added by Mariska Kriek
 Publication date 2013
  fields Physics
and research's language is English
 Authors Mariska Kriek




Ask ChatGPT about the research

This letter utilizes composite spectral energy distributions (SEDs) constructed from NEWFIRM Medium-Band Survey photometry to constrain the dust attenuation curve in 0.5<z<2.0 galaxies. Based on similarities between the full SED shapes (0.3-8 micron), we have divided galaxies in 32 different spectral classes and stacked their photometry. As each class contains galaxies over a range in redshift, the resulting rest-frame SEDs are well-sampled in wavelength and show various spectral features including Halpha and the UV dust bump at 2175 Angstrom. We fit all composite SEDs with flexible stellar population synthesis models, while exploring attenuation curves with varying slopes and UV bump strengths. The Milky Way and Calzetti law provide poor fits at UV wavelengths for nearly all SEDs. Consistent with previous studies, we find that the best-fit attenuation law varies with spectral type. There is a strong correlation between the best-fit dust slope and UV bump strength, with steeper laws having stronger bumps. Moreover, the attenuation curve correlates with specific star formation rate (SFR), with more active galaxies having shallower dust curves and weaker bumps. There is also a weak correlation with inclination. The observed trends can be explained by differences in the dust-to-star geometry, a varying grain size distribution, or a combination of both. Our results have several implications for galaxy evolution studies. First, the assumption of a universal dust model leads to biases in derived galaxy properties. Second, the presence of a dust bump may result in underestimated values for the UV slope, used to correct SFRs of distant galaxies.



rate research

Read More

We investigate the attenuation law in $zsim 6$ quasars by combining cosmological zoom-in hydrodynamical simulations of quasar host galaxies, with multi-frequency radiative transfer calculations. We consider several dust models differing in terms of grain size distributions, dust mass and chemical composition, and compare the resulting synthetic Spectral Energy Distributions (SEDs) with data from bright, early quasars. We show that only dust models with grain size distributions in which small grains ($a < 0.1~mu$m, corresponding to $approx 60%$ of the total dust mass) are selectively removed from the dusty medium provide a good fit to the data. Removal can occur if small grains are efficiently destroyed in quasar environments and/or early dust production preferentially results in large grains. Attenuation curves for these models are close to flat, and consistent with recent data; they correspond to an effective dust-to-metal ratio $f_d simeq 0.38$, i.e. close to the Milky Way value.
We derive the UV-optical stellar dust attenuation curve of galaxies at z=1.4-2.6 as a function of gas-phase metallicity. We use a sample of 218 star-forming galaxies, excluding those with very young or heavily obscured star formation, from the MOSFIRE Deep Evolution Field (MOSDEF) survey with H$alpha$, H$beta$, and [NII]$lambda 6585$ spectroscopic measurements. We constrain the shape of the attenuation curve by comparing the average flux densities of galaxies sorted into bins of dust obscuration using Balmer decrements, i.e., H$alpha$-to-H$beta$ luminosities. The average attenuation curve for the high-metallicity sample (12+log(O/H)>8.5, corresponding to $M_*gtrsim10^{10.4},M_{odot}$) has a shallow slope, identical to that of the Calzetti local starburst curve, and a significant UV 2175A extinction bump that is $sim 0.5times$ the strength of the Milky Way bump. On the other hand, the average attenuation curve of the low-metallicity sample (12+log(O/H) $sim 8.2-8.5$) has a steeper slope similar to that of the SMC curve, only consistent with the Calzetti slope at the $3sigma$ level. The UV bump is not detected in the low-metallicity curve, indicating the relative lack of the small dust grains causing the bump at low metallicities. Furthermore, we find that on average the nebular reddening (E(B-V)) is a factor of 2 times larger than that of the stellar continuum for galaxies with low metallicities, while the nebular and stellar reddening are similar for galaxies with higher metallicities. The latter is likely due to a high surface density of dusty clouds embedding the star forming regions but also reddening the continuum in the high-metallicity galaxies.
(Abridged) The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use GALEX, XMM Optical Monitor, and HST data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with candidates provided by Galaxy Zoo participants. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law close to the Calzetti et al. (1994) form; the UV slope for the overall sample is substantially shallower than found by Wild et al. (2011), a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. This grey law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. The extrapolation needed to compare attenution between backlit galaxies at moderate redshifts, and local systems from SDSS data, is mild enough to allow use of galaxy overlaps to trace the cosmic history of dust. For NGC 2207, the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the ultraviolet, which opens the possibility that widespread diffuse dust dominates over dust in star-forming regions deep into the ultraviolet. Comparison with published radiative-transfer models indicates that the role of dust clumping dominates over differences in grain populations, at this spatial resolution.
326 - V. Gonzalez-Perez 2012
Using GALFORM, a semi-analytical model of galaxy formation in the Lambda cold dark matter cosmology, we study the rest-frame ultraviolet (UV) colours of Lyman-break galaxies (LBGs) in the redshift range 2.5 < z < 10. As the impact of dust on UV luminosity can be dramatic, our model includes a self-consistent computation of dust attenuation based on a radiative transfer model. We find that intrinsically brighter galaxies suffer stronger dust attenuation than fainter ones, though the relation has a large scatter. The model predicts galaxies with UV colours consistent with the colour selection regions designed to select LBGs in observational surveys. We find that the drop-out technique that selects LBGs based on two rest-frame UV colours is robust and effective, selecting more than 70 per cent of UV bright galaxies at a given redshift. We investigate the impact on the predicted UV colours of varying selected model parameters. We find that the UV colours are most sensitive to the modelling of dust attenuation and in particular, to the extinction curve used in the radiative transfer calculation. If we assume a Milky Way dust extinction curve, the predicted UV continuum slopes are, in general, bluer than observed. However, we find that the opposite is true when using the Small Magellanic Cloud dust extinction curve. This demonstrates the strong dependence of UV colours on dust properties and highlights the inadequacy of using the UV continuum slope as a tracer of dust attenuation without any further knowledge of the galaxy inclination or dust characteristics in high redshift galaxies.
We make use of SHARDS, an ultra-deep (<26.5AB) galaxy survey that provides optical photo-spectra at resolution R~50, via medium band filters (FWHM~150A). This dataset is combined with ancillary optical and NIR fluxes to constrain the dust attenuation law in the rest-frame NUV region of star-forming galaxies within the redshift window 1.5<z<3. We focus on the NUV bump strength (B) and the total-to-selective extinction ratio (Rv), targeting a sample of 1,753 galaxies. By comparing the data with a set of population synthesis models coupled to a parametric dust attenuation law, we constrain Rv and B, as well as the colour excess, E(B-V). We find a correlation between Rv and B, that can be interpreted either as a result of the grain size distribution, or a variation of the dust geometry among galaxies. According to the former, small dust grains are associated with a stronger NUV bump. The latter would lead to a range of clumpiness in the distribution of dust within the interstellar medium of star-forming galaxies. The observed wide range of NUV bump strengths can lead to a systematic in the interpretation of the UV slope ($beta$) typically used to characterize the dust content. In this study we quantify these variations, concluding that the effects are $Deltabeta$~0.4.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا