Do you want to publish a course? Click here

Determination of the stellar (n,gamma) cross section of 40Ca with accelerator mass spectrometry

168   0   0.0 ( 0 )
 Added by Iris Dillmann
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The stellar (n,gamma) cross section of 40Ca at kT=25 keV has been measured with a combination of the activation technique and accelerator mass spectrometry (AMS). This combination is required when direct off-line counting of the produced activity is compromised by the long half-life and/or missing gamma-ray transitions. The neutron activations were performed at the Karlsruhe Van de Graaff accelerator using the quasistellar neutron spectrum of kT=25 keV produced by the 7Li(p,n)7Be reaction. The subsequent AMS measurements were carried out at the Vienna Environmental Research Accelerator (VERA) with a 3 MV tandem accelerator. The doubly magic 40Ca is a bottle-neck isotope in incomplete silicon burning, and its neutron capture cross section determines the amount of leakage, thus impacting on the eventual production of iron group elements. Because of its high abundance, 40Ca can also play a secondary role as neutron poison for the s-process. Previous determinations of this value at stellar energies were based on time-of-flight measurements. Our method uses an independent approach, and yields for the Maxwellian-averaged cross section at kT=30 keV a value of <sigma>30 keV= 5.73+/-0.34 mb.



rate research

Read More

The $^{58}$Ni$(n,gamma)^{59}$Ni cross section was measured with a combination of the activation technique and accelerator mass spectrometry (AMS). The neutron activations were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator using the quasi-stellar neutron spectrum at $kT=25$ keV produced by the $^7$Li($p,n$)$^7$Be reaction. The subsequent AMS measurements were carried out at the 14 MV tandem accelerator of the Maier-Leibnitz-Laboratory in Garching using the Gas-filled Analyzing Magnet System (GAMS). Three individual samples were measured, yielding a Maxwellian-averaged cross section at $kT=30$ keV of $langlesigmarangle_{30text{keV}}$= 30.4 (23)$^{syst}$(9)$^{stat}$ mbarn. This value is slightly lower than two recently published measurements using the time-of-flight (TOF) method, but agrees within the uncertainties. Our new results also resolve the large discrepancy between older TOF measurements and our previous value.
64 - H. Nassar , M. Paul , I. Ahmad 2004
The 62Ni(n,gamma)63Ni(t_1/2=100+-2 yrs) reaction plays an important role in the control of the flow path of the slow neutron-capture (s-) nucleosynthesis process. We have measured for the first time the total cross section of this reaction for a quasi-Maxwellian (kT = 25 keV) neutron flux. The measurement was performed by fast-neutron activation, combined with accelerator mass spectrometry to detect directly the 63Ni product nuclei. The experimental value of 28.4+-2.8 mb, fairly consistent with a recent theoretical estimate, affects the calculated net yield of 62Ni itself and the whole distribution of nuclei with 62<A <90 produced by the weak s-process in massive stars.
The cross section of the $^{23}$Na($n, gamma$)$^{24}$Na reaction has been measured via the activation method at the Karlsruhe 3.7 MV Van de Graaff accelerator. NaCl samples were exposed to quasistellar neutron spectra at $kT=5.1$ and 25 keV produced via the $^{18}$O($p, n$)$^{18}$F and $^{7}$Li($p, n$)$^{7}$Be reactions, respectively. The derived capture cross sections $langlesigmarangle_{rm kT=5 keV}=9.1pm0.3$ mb and $langlesigmarangle_{rm kT=25 keV}=2.03 pm 0.05$ mb are significantly lower than reported in literature. These results were used to substantially revise the radiative width of the first $^{23}$Na resonance and to establish an improved set of Maxwellian average cross sections. The implications of the lower capture cross section for current models of $s$-process nucleosynthesis are discussed.
We have investigated the (n,gamma) cross sections of p-process isotopes with the activation technique. The measurements were carried out at the Karlsruhe Van de Graaff accelerator using the 7Li(p,n)7Be source for simulating a Maxwellian neutron distribution of kT = 25 keV. Stellar cross section measurements are reported for the light p-process isotopes 102Pd, 120Te, 130,132Ba, and 156Dy. In a following paper the cross sections of 168Yb, 180W, 184Os, 190Pt, and 196Hg will be discussed. The data are extrapolated to p-process energies by including information from evaluated nuclear data libraries. The results are compared to standard Hauser-Feshbach models frequently used in astrophysics.
Modern models of s-process nucleosynthesis in stars require stellar reaction rates with high precision. Most of the neutron capture cross sections in the s-process have been measured and for an increasing number of reactions the required precision is achieved. This does not necessarily mean, however, that the stellar rates are constrained equally well because only capture on the ground state of a target is measured in the laboratory. Captures on excited states can considerably contribute to stellar rates already at typical s-process temperatures. We show that the ground state contribution X to a stellar rate is the relevant measure to identify reactions which are or could be well constrained by experiments and apply it to (n,gamma) reactions in the s-process. It is further shown that the maximally possible reduction in uncertainty of a rate through determination of the g.s. cross section is directly given by X. An error analysis of X is presented and it is found that X is a robust measure with overall small uncertainties. Several specific examples (neutron capture on 79Se, 95Zr, 121Sn, 187Os, and 193Pt) are discussed in detail. The ground state contributions for a set of 411 neutron capture reactions around the s-process path are presented in a table. This allows to identify reactions which may be better constrained by experiments and such which cannot be constrained by only measuring ground state cross sections (and thus require supplementary studies). General trends and implications are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا