Do you want to publish a course? Click here

Pumping of nuclear spins by the optical solid effect in a quantum dot

454   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate that efficient optical pumping of nuclear spins in semiconductor quantum dots (QDs) can be achieved by resonant pumping of optically forbidden transitions. This process corresponds to one-to-one conversion of a photon absorbed by the dot into a polarized nuclear spin, which also has potential for initialization of hole spin in QDs. Pumping via the forbidden transition is a manifestation of the optical solid effect, an optical analogue of the effect previously observed in electron spin resonance experiments in the solid state. We find that by employing this effect, nuclear polarization of 65% can be achieved, the highest reported so far in optical orientation studies in QDs. The efficiency of the spin pumping exceeds that employing the allowed transition, which saturates due to the low probability of electron-nuclear spin flip-flop.



rate research

Read More

235 - F. Klotz , V. Jovanov , J. Kierig 2010
A highly asymmetric dynamic nuclear spin pumping is observed in a single self assembled InGaAs quantum dot subject to resonant optical pumping of the neutral exciton transition leading to a large maximum polarization of 54%. This dynamic nuclear polarization is found to be much stronger following pumping of the higher energy Zeeman state. Time-resolved measurements allow us to directly monitor the buildup of the nuclear spin polarization in real time and to quantitatively study the dynamics of the process. A strong dependence of the observed dynamic nuclear polarization on the applied magnetic field is found, with resonances in the pumping efficiency being observed for particular magnetic fields. We develop a model that fully accounts for the observed behaviour, where the pumping of the nuclear spin system is due to hyperfine-mediated spin flip transitions between the states of the neutral exciton manifold.
Irradiating a semiconductor with circularly polarized light creates spin-polarized charge carriers. If the material contains atoms with non-zero nuclear spin, they interact with the electron spins via the hyperfine coupling. Here, we consider GaAs/AlGaAs quantum wells, where the conduction-band electron spins interact with three different types of nuclear spins. The hyperfine interaction drives a transfer of spin polarization to the nuclear spins, which therefore acquire a polarization that is comparable to that of the electron spins. In this paper, we analyze the dynamics of the optical pumping process in the presence of an external magnetic field while irradiating a single quantum well with a circularly polarized laser. We measure the time dependence of the photoluminescence polarization to monitor the buildup of the nuclear spin polarization and thus the average hyperfine interaction acting on the electron spins. We present a simple model that adequately describes the dynamics of this process and is in good agreement with the experimental data.
400 - G. Wang , C. R. Zhu , B. L. Liu 2014
We have measured the donor-bound electron spin dynamics in cubic GaN by time-resolved Kerr rotation experiments. The ensemble electron spin dephasing time in this quantum dot like system characterized by a Bohr radius of 2.5 nm is of the order of 1.5 ns as a result of the interaction with the fluctuating nuclear spins. It increases drastically when an external magnetic field as small as 10 mT is applied. We extract a dispersion of the nuclear hyperfine field {delta}Bn $sim$ 4 mT, in agreement with calculations. We also demonstrate for the first time in GaN based systems the optical pumping of nuclear spin yielding the build-up of a significant nuclear polarization.
121 - P. Maletinsky , M. Kroner , 2009
The physics of interacting nuclear spins arranged in a crystalline lattice is typically described using a thermodynamic framework: a variety of experimental studies in bulk solid-state systems have proven the concept of a spin temperature to be not only correct but also vital for the understanding of experimental observations. Using demagnetization experiments we demonstrate that the mesoscopic nuclear spin ensemble of a quantum dot (QD) can in general not be described by a spin temperature. We associate the observed deviations from a thermal spin state with the presence of strong quadrupolar interactions within the QD that cause significant anharmonicity in the spectrum of the nuclear spins. Strain-induced, inhomogeneous quadrupolar shifts also lead to a complete suppression of angular momentum exchange between the nuclear spin ensemble and its environment, resulting in nuclear spin relaxation times exceeding an hour. Remarkably, the position dependent axes of quadrupolar interactions render magnetic field sweeps inherently non-adiabatic, thereby causing an irreversible loss of nuclear spin polarization.
Nuclear polarization dynamics are measured in the nuclear spin bi-stability regime in a single optically pumped InGaAs/GaAs quantum dot. The controlling role of nuclear spin diffusion from the dot into the surrounding material is revealed in pump-probe measurements of the non-linear nuclear spin dynamics. We measure nuclear spin decay times in the range 0.2-5 sec, strongly dependent on the optical pumping time. The long nuclear spin decay arises from polarization of the material surrounding the dot by spin diffusion for long (>5sec) pumping times. The time-resolved methods allow the detection of the unstable nuclear polarization state in the bi-stability regime otherwise undetectable in cw experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا