Do you want to publish a course? Click here

Long nuclear spin decay times controlled by optical pumping in individual quantum dots

274   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nuclear polarization dynamics are measured in the nuclear spin bi-stability regime in a single optically pumped InGaAs/GaAs quantum dot. The controlling role of nuclear spin diffusion from the dot into the surrounding material is revealed in pump-probe measurements of the non-linear nuclear spin dynamics. We measure nuclear spin decay times in the range 0.2-5 sec, strongly dependent on the optical pumping time. The long nuclear spin decay arises from polarization of the material surrounding the dot by spin diffusion for long (>5sec) pumping times. The time-resolved methods allow the detection of the unstable nuclear polarization state in the bi-stability regime otherwise undetectable in cw experiments.



rate research

Read More

Electric charge detection by atomic force microscopy (AFM) with single- electron resolution (e-EFM) is a promising way to investigate the electronic level structure of individual quantum dots (QD). The oscillating AFM tip modulates the energy of the QDs, causing single electrons to tunnel between QDs and an electrode. The resulting oscillating electrostatic force changes the resonant frequency and damping of the AFM cantilever, enabling electrometry with a single-electron sensitivity. Quantitative electronic level spectroscopy is possible by sweeping the bias voltage. Charge stability diagram can be obtained by scanning the AFM tip around the QD. e-EFM technique enables to investigate individual colloidal nanoparticles and self- assembled QDs without nanoscale electrodes. e-EFM is a quantum electromechanical system where the back-action of a tunneling electron is detected by AFM; it can also be considered as a mechanical analog of admittance spectroscopy with a radio frequency resonator, which is emerging as a promising tool for quantum state readout for quantum computing. In combination with the topography imaging capability of the AFM, e-EFM is a powerful tool for investigating new nanoscale material systems which can be used as quantum bits.
We show that optical pumping of electron spins in individual InGaAs quantum dots leads to strong nuclear polarisation that we measure via the Overhauser shift (OHS) in magneto-photoluminescence experiments between 0 and 4T. We find a strongly non-monotonous dependence of the OHS on the applied magnetic field, with a maximum nuclear polarisation of 40% for intermediate magnetic fields. We observe that the OHS is larger for nuclear fields anti-parallel to the external field than in the parallel configuration. A bistability in the dependence of the OHS on the spin polarization of the optically injected electrons is found. All our findings are qualitatively understood with a model based on a simple perturbative approach.
The mesoscopic spin system formed by the 10E4-10E6 nuclear spins in a semiconductor quantum dot offers a unique setting for the study of many-body spin physics in the condensed matter. The dynamics of this system and its coupling to electron spins is fundamentally different from its bulk counter-part as well as that of atoms due to increased fluctuations that result from reduced dimensions. In recent years, the interest in studying quantum dot nuclear spin systems and their coupling to confined electron spins has been fueled by its direct implication for possible applications of such systems in quantum information processing as well as by the fascinating nonlinear (quantum-)dynamics of the coupled electron-nuclear spin system. In this article, we review experimental work performed over the last decades in studying this mesoscopic,coupled electron-nuclear spin system and discuss how optical addressing of electron spins can be exploited to manipulate and read-out quantum dot nuclei. We discuss how such techniques have been applied in quantum dots to efficiently establish a non-zero mean nuclear spin polarization and, most recently, were used to reduce fluctuations of the average quantum dot nuclear spin orientation. Both results in turn have important implications for the preservation of electron spin coherence in quantum dots, which we discuss. We conclude by speculating how this recently gained understanding of the quantum dot nuclear spin system could in the future enable experimental observation of quantum-mechanical signatures or possible collective behavior of mesoscopic nuclear spin ensembles.
267 - F. Klotz , V. Jovanov , J. Kierig 2010
A highly asymmetric dynamic nuclear spin pumping is observed in a single self assembled InGaAs quantum dot subject to resonant optical pumping of the neutral exciton transition leading to a large maximum polarization of 54%. This dynamic nuclear polarization is found to be much stronger following pumping of the higher energy Zeeman state. Time-resolved measurements allow us to directly monitor the buildup of the nuclear spin polarization in real time and to quantitatively study the dynamics of the process. A strong dependence of the observed dynamic nuclear polarization on the applied magnetic field is found, with resonances in the pumping efficiency being observed for particular magnetic fields. We develop a model that fully accounts for the observed behaviour, where the pumping of the nuclear spin system is due to hyperfine-mediated spin flip transitions between the states of the neutral exciton manifold.
We demonstrate that efficient optical pumping of nuclear spins in semiconductor quantum dots (QDs) can be achieved by resonant pumping of optically forbidden transitions. This process corresponds to one-to-one conversion of a photon absorbed by the dot into a polarized nuclear spin, which also has potential for initialization of hole spin in QDs. Pumping via the forbidden transition is a manifestation of the optical solid effect, an optical analogue of the effect previously observed in electron spin resonance experiments in the solid state. We find that by employing this effect, nuclear polarization of 65% can be achieved, the highest reported so far in optical orientation studies in QDs. The efficiency of the spin pumping exceeds that employing the allowed transition, which saturates due to the low probability of electron-nuclear spin flip-flop.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا