No Arabic abstract
Spitzer MIPS 24 um images were obtained for 36 Galactic planetary nebulae (PNe) whose central stars are hot white dwarfs (WDs) or pre-WDs with effective temperatures of ~100,000 K or higher. Diffuse 24 um emission is detected in 28 of these PNe. The eight non-detections are angularly large PNe with very low H-alpha surface brightnesses. We find three types of correspondence between the 24 um emission and H-alpha line emission of these PNe: six show 24 um emission more extended than H-alpha emission, nine have a similar extent at 24 um and H-alpha, and 13 show diffuse 24 um emission near the center of the H-alpha shell. The sizes and surface brightnesses of these three groups of PNe and the non-detections suggest an evolutionary sequence, with the youngest ones being brightest and the most evolved ones undetected. The 24 um band emission from these PNe is attributed to [O IV] 25.9 um and [Ne V] 24.3 um line emission and dust continuum emission, but the relative contributions of these three components depend on the temperature of the central star and the distribution of gas and dust in the nebula.
The Spitzer Space Telescope has three science instruments (IRAC, MIPS, and IRS) that can take images at 3.6, 4.5, 5.8, 8.0, 24, 70, and 160 microns, spectra over 5--38 microns, and spectral energy distribution over 52--100 microns. The Spitzer archive contains targeted imaging observations for more than 100 PNe. Spitzer legacy surveys, particularly the GLIMPSE survey of the Galactic plane, contain additional serendipitous imaging observations of PNe. Spitzer imaging and spectroscopic observations of PNe allow us to investigate atomic/molecular line emission and dust continuum from the nebulae as well as circumstellar dust disks around the central stars. Highlights of Spitzer observations of PNe are reviewed in this paper.
Two types of dust disks around white dwarfs (WDs) have been reported: small dust disks around cool metal-rich WDs consisting of tidally disrupted asteroids, and a large dust disk around the hot central WD of the Helix planetary nebula (PN) possibly produced by collisions among Kuiper Belt-like objects. To search for more dust disks of the latter type, we have conducted a Spitzer MIPS 24 um survey of 71 hot WDs or pre-WDs, among which 35 are central stars of PNe (CSPNs). Nine of these evolved stars are detected and their 24 um flux densities are at least two orders of magnitude higher than their expected photospheric emission. Considering the bias against detection of distant objects, the 24 um detection rate for the sample is >~15%. It is striking that seven, or ~20%, of the WD and pre-WDs in known PNe exhibit 24 um excesses, while two, or 5-6%, of the WDs not in PNe show 24 um excesses and they have the lowest 24 um flux densities. We have obtained follow-up Spitzer IRS spectra for five objects. Four show clear continuum emission at 24 um, and one is overwhelmed by a bright neighboring star but still show a hint of continuum emission. In the cases of WD 0950+139 and CSPN K1-22, a late-type companion is present, making it difficult to determine whether the excess 24 um emission is associated with the WD or its red companion. High-resolution images in the mid-IR are needed to establish unambiguously the stars responsible for the 24 um excesses.
We present an atlas of more than one hundred original images of planetary nebulae (PNe). These images were taken in a narrow-band filter centred on the nebular emission of the [N II] during several observing campaigns using two moderate-aperture telescopes, at the Complejo Astronomico El Leoncito (CASLEO), and the Estacion Astrofisica de Bosque Alegre (EABA), both in Argentina. The data provided by this atlas represent one of the most extensive image surveys of PNe in [N II]. We compare the new images with those available in the literature, and briefly describe all cases in which our [N II] images reveal new and interesting structures.
Among its great findings, the IRAS mission showed the existence of an unidentified mid-IR feature around 21 um. Since its discovery, this feature has been detected in all C-rich proto-PNe of intermediate spectral type (A-G) and - weakly - in a few PNe and AGB stars, but the nature of its carriers remains unknown. In this paper, we show the detection of this feature in the spectra of three new stars transiting from the AGB to the PN stage obtained with the Spitzer Space Telescope. Following a recent suggestion, we try to model the SEDs of our targets with amorphous carbon and FeO, which might be responsible for the unidentified feature. The fit thus obtained is not completely satisfactory, since the shape of the feature is not well matched. In the attempt to relate the unidentified feature to other dust features, we retrieved mid-IR spectra of all the 21-um sources currently known from ISO and Spitzer on-line archives and noticed a correlation between the flux emitted in the 21-um feature and that emitted at 7 and 11 um (PAH bands and HAC broad emission). Such a correlation may point to a common nature of the carriers.
We compute successfully the launching of two magnetic winds from two circumbinary disks formed after a common envelope event. The launching is produced by the increase of magnetic pressure due to the collapse of the disks. The collapse is due to internal torques produced by a weak poloidal magnetic field. The first wind can be described as a wide jet, with an average mass-loss rate of $sim 1.3 times 10^{-7}$ Moy and a maximum radial velocity of $sim 230$ kms. The outflow has a half-opening angle of $sim 20^{circ}$. Narrow jets are also formed intermittently with velocities up to 3,000 kms, with mass-loss rates of $sim 6 times 10^{-12} $ Moy during short periods of time. The second wind can be described as a wide X-wind, with an average mass-loss rate of $sim 1.68 times 10^{-7}$ Moy and a velocity of $sim 30$ kms. A narrow jet is also formed with a velocity of 250 kms, and a mass-loss rates of $sim 10^{-12} $ Moy. The computed jets are used to provide inflow boundary conditions for simulations of proto-planetary nebulae. The wide jet evolves into a molecular collimated outflow within a few astronomical units, producing proto-planetary nebulae with bipolar, elongated shapes, whose kinetic energies reach $sim 4 times 10^{45}$ erg at 1,000 years. Similarities with observed features in W43A, OH231.8+4.2, and Hen 3-1475 are discussed. The computed wide X-wind produces proto-planetary nebulae with slower expansion velocities, with bipolar and elliptical shapes, and possible starfish type and quadrupolar morphology.