Do you want to publish a course? Click here

A Multi-Color Optical Survey of the Orion Nebula Cluster. Part I: the Catalog

127   0   0.0 ( 0 )
 Added by Nicola Da Rio
 Publication date 2009
  fields Physics
and research's language is English
 Authors Nicola Da Rio




Ask ChatGPT about the research

We present U, B, V, I broad-band, 6200A TiO medium-band and Halpha photometry of the Orion Nebula Cluster obtained with the WFI imager at the ESO/MPI 2.2 telescope. The nearly-simultaneous observations cover the entire ONC in a field of about 34x34 arcmin. They enable us to determine stellar colors avoiding the additional scatter in the photometry induced by stellar variability typical of pre-main sequence stars. We identify 2,612 point-like sources in I band, 58%, 43% and 17% of them detected also in V, B and U, respectively. 1040 sources are identified in Halpha band. In this paper we present the observations, the calibration techniques, and the resulting catalog. We show the derived CMD of the population and discuss the completeness of our photometry. We define a spectro-photometric TiO index from the fluxes in V, I, and TiO-band. We find a correlation between the index and the spectral type valid for M-type stars, that is accurate to better than 1 spectral sub-class for M3-M6 types and better than 2 spectral subclasses for M0-M2 types. This allows us to newly classify 217 stars. We subtract from our Halpha photometry the photospheric continuum at its wavelength, deriving calibrated line excess for the full sample. This represents the largest Halpha star catalog obtained to date on the ONC. This data set enables a full re-analysis of the properties of the Pre-Main Sequence population in the Orion Nebula Cluster to be presented, in an accompanying paper.



rate research

Read More

We present a new analysis of the stellar population of the Orion Nebula Cluster (ONC) based on multi-band optical photometry and spectroscopy. We study the color-color diagrams in BVI, plus a narrow-band filter centered at 6200A, finding evidences that intrinsic color scales valid for main-sequence dwarfs are incompatible with the ONC, while a better agreement is found employing synthetic intrinsic colors obtained constraining the typical lower surface gravity of young stars. We refine these model colors even further, empirically, by comparison with a sample of ONC stars with no accretion and no extinction. We consider the stars with known spectral types from the literature, and add 65 newly classified stars from slit spectroscopy and 182 M-type from narrow-band photometry; in this way we isolate a sample of about 1000 stars with known spectral type. We introduce a new method to self-consistently derive reddening and accretion excess from the location of each star in the BVI color-color diagram. This enables us to accurately determine the extinction of the ONC members. We adopt a lower distance for the ONC than previously assumed, based on recent parallax measurements. With a careful choice also of the spectral type-temperature transformation, we produce the new H-R diagram of the ONC population, more populated than previous works. With respect to previous works, we find higher luminosity for late-type stars and a lower luminosity for early types. We determine the age distribution of the population, peaking at 2-3 Myr, a higher age than previously estimated. We study the distribution of the members in the mass-age plane, and find that taking into account selection effects due to incompleteness removes an apparent correlation between mass and age. We derive the IMF for low- and intermediate-mass members of the ONC, which turns out to be model-dependent, and shows a turn-over at ~<0.2Msun.
We present a newly enlarged census of the compact radio population towards the Orion Nebula Cluster (ONC) using high-sensitivity continuum maps (3-10 $mu$Jy bm$^{-1}$) from a total of $sim30$ h centimeter-wavelength observations over an area of $sim$20$times20$ obtained in the C-band (4$-$8 GHz) with the Karl G. Jansky Very Large Array (VLA) in its high-resolution A-configuration. We thus complement our previous deep survey of the innermost areas of the ONC, now covering the field of view of the Chandra Orion Ultra-deep Project (COUP). Our catalog contains 521 compact radio sources of which 198 are new detections. Overall, we find that 17% of the (mostly stellar) COUP sources have radio counterparts, while 53% of the radio sources have COUP counterparts. Most notably, the radio detection fraction of X-ray sources is higher in the inner cluster and almost constant for $r>3$ (0.36 pc) from $theta^1$ Ori C suggesting a correlation between the radio emission mechanism of these sources and their distance from the most massive stars at the center of the cluster, for example due to increased photoionisation of circumstellar disks. The combination with our previous observations four years prior lead to the discovery of fast proper motions of up to $sim$373 km s$^{-1}$ from faint radio sources associated with ejecta of the OMC1 explosion. Finally, we search for strong radio variability. We found changes in flux density by a factor of $lesssim$5 within our observations and a few sources with changes by a factor $>$10 on long timescales of a few years.
Orion A hosts the nearest massive star factory, thus offering a unique opportunity to resolve the processes connected with the formation of both low- and high-mass stars. Here we present the most detailed and sensitive near-infrared (NIR) observations of the entire molecular cloud to date. With the unique combination of high image quality, survey coverage, and sensitivity, our NIR survey of Orion A aims at establishing a solid empirical foundation for further studies of this important cloud. In this first paper we present the observations, data reduction, and source catalog generation. To demonstrate the data quality, we present a first application of our catalog to estimate the number of stars currently forming inside Orion A and to verify the existence of a more evolved young foreground population. We used the European Southern Observatorys (ESO) Visible and Infrared Survey Telescope for Astronomy (VISTA) to survey the entire Orion A molecular cloud in the NIR $J, H$, and $K_S$ bands, covering a total of $sim$18.3 deg$^2$. We implemented all data reduction recipes independently of the ESO pipeline. Estimates of the young populations toward Orion A are derived via the $K_S$-band luminosity function. Our catalog (799995 sources) increases the source counts compared to the Two Micron All Sky Survey by about an order of magnitude. The 90% completeness limits are 20.4, 19.9, and 19.0 mag in $J, H$, and $K_S$, respectively. The reduced images have 20% better resolution on average compared to pipeline products. We find between 2300 and 3000 embedded objects in Orion A and confirm that there is an extended foreground population above the Galactic field, in agreement with previous work. The Orion A VISTA catalog represents the most detailed NIR view of the nearest massive star-forming region and provides a fundamental basis for future studies of star formation processes toward Orion.
145 - Nicola Da Rio 2014
The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues on the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing the latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC, and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, consistent with a higher degree of dynamical processing. At larger distances the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the ISM density, estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor $sim 1.8$ to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that, at the half-mass radius, 90% of the stellar population formed within $sim 5$-$8$ free-fall times ($t_{rm ff}$). This implies a star formation efficiency per $t_{rm ff}$ of $epsilon_{rm ff}sim 0.04$-$0.07$, i.e., relatively slow and inefficient star formation rates during star cluster formation.
130 - Nicola Da Rio 2011
We present a new census of the Orion Nebula Cluster (ONC) over a large field of view (>30x30), significantly increasing the known population of stellar and substellar cluster members with precisely determined properties. We develop and exploit a technique to determine stellar effective temperatures from optical colors, nearly doubling the previously available number of objects with effective temperature determinations in this benchmark cluster. Our technique utilizes colors from deep photometry in the I-band and in two medium-band filters at lambda~753 and 770nm, which accurately measure the depth of a molecular feature present in the spectra of cool stars. From these colors we can derive effective temperatures with a precision corresponding to better than one-half spectral subtype, and importantly this precision is independent of the extinction to the individual stars. Also, because this technique utilizes only photometry redward of 750nm, the results are only mildly sensitive to optical veiling produced by accretion. Completing our census with previously available data, we place some 1750 sources in the Hertzsprung-Russel diagram and assign masses and ages down to 0.02 solar masses. At faint luminosities, we detect a large population of background sources which is easily separated in our photometry from the bona fide cluster members. The resulting initial mass function of the cluster has good completeness well into the substellar mass range, and we find that it declines steeply with decreasing mass. This suggests a deficiency of newly formed brown dwarfs in the cluster compared to the Galactic disk population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا